

SIS100 extraction layout: Influence of nonlinear beam dynamics

D. Ondreka, B. Galnander, S. Sorge, GSI 5th SX Workshop, MedAustron, 13.02.2024

Contents

- Lattice design criteria
- Constraints on SX
- Effect of nonlinearities on SX
- Impact of field errors
- SX schemes for SIS100
- Challenges for operation
- Summary and Outlook

SIS100: Overview

- Basic parameters
 - Circumference 1083m (= 5 x SIS18)
 - Max. magnetic rigidity 100Tm
 - Max. ramp rate 4T/s
 - Mostly super-ferric magnets
- Ion optical layout
 - Super-periodicity 6, 14 cells per period
 - DF focusing structure (charge separator lattice)
 - Optimized for operation with intermediate charge state ions
- Working modes
 - Batch injection from SIS18
 - Slow extraction to fixed targets
 - Fast extraction of compressed single bunches to fixed targets or storage rings

SIS100 optical parameters (SE)		
Q _h / Q _v	17.31 / 17.4	
Q' _h / Q' _v	-20.3 / -20.6	
α _p	0.005	
Yt	14.2	

SIS100: Charge Separator Lattice

- Increased intensities due to low charge states
 - No stripping losses, lower space charge
 - FAIR design ion U²⁸⁺ (instead of U⁷³⁺)
 - Large transverse emittances in relation to rigidity
- Stable vacuum becomes critical issue
 - High electron loss cross section with residual gas
 - Lost particles create avalanche due to desorption
 - Tighter constraint than space charge
- SIS100 optimized for low charge states
 - DF doublet confining losses to well defined spots
 - Strong focusing to maximize catching efficiency
 - Tunes ~18, nat. chromaticities ~ -20
 - Challenging for SX due to large emittances
 - Cryo-catchers limit acceptance for SX

FAIR	SIS18	SIS100
lon	U ⁷³⁺	U ²⁸⁺
Max. Energy	1 GeV/u	2.7 GeV/u
Max. Intensity	10 ¹⁰ /s	10 ¹¹ /s

Vacuum instability by desorption

e-loss cross sections

FAIR Est

Catching efficiency for different tunes

Cryo-catcher prototype

SX-WS 5/SIS100 layout: nonlinear dynamics

SIS100: Slow Extraction Layout

- Third order resonant extraction
 - Resonance tune $Q_r = 52/3$
 - Excited by six sextupoles with harmonic distribution
 - 42 additional chromaticity sextupoles
 - Large natural hor. chromaticity Q'_x = -18
- Extraction channel
 - 2 electrostatic wire septa (ES)
 - Vertical extraction through Lambertson septum (LS)
 - Single orbit bump at ES/LS
 - 3 magnetic septa (MS)
 - Lambertson steerer (LX) for hor. correction
- Slow extraction schemes
 - Baseline: Transverse RF KO extraction
 - Alternative: Tune ramp or similar
 - Reasons for alternative scheme
 - Uncertainties about micro-spill structure
 - Fall-back options for KO exciter failures

LS cross section

Constraints: Extraction Channel

- Geometric constraints
 - ES kicks deliver 16mm separation at LS
 - Leaves design margin of ±4mm (for δ=0) at LS
 - Position response from ES1 to LS 15mm/mrad
 - Constrains SX separatrices
 - Permissible angular spread at ES1 ±0.25mrad
 - Spiral pitch at ES limited to |step/pitch| > 11.5 m/rad
- Consequences for SX schemes
 - Small angular spread despite large emittances
 - Curvature of separatrices must be limited
 - Limits simplest tune-sweep SX scheme to emittances below 5 mm*mrad

13.02.2024

Constraints: Spiral Step

- Thermal load on ES wires
 - SIS100: 100µm W-Re25% wires at 1N tension
 - High dE/dx of heavy ions like U²⁸⁺
 - Temperatures critical for small spiral step
 - Spiral step must be at least 8 to 10mm
- Particle amplitudes over last three turns
 - Strongly constrained by cryo-catchers
 - Cryo-catcher distribution matched to amplitudes
 - Spiral step must not exceed 12 to 14mm

Thermal load on ES wires for U²⁸⁺ design intensities

GSI Helmholtzzentrum für Schwerionenforschung GmbH

SX-WS 5/SIS100 layout: nonlinear dynamics

7

13.02.2024

Nonlinearities in SX

- Simplest lattice for 3rd order resonant SX
 - Sextupoles for resonance excitation only
 - No resonance but extraction resonance excited
- Additional nonlinearities in real SX lattices
 - Sextupoles for chromaticity correction
 - Quadrupole fringe fields (pseudo-octupole)
 - Higher multipoles from field errors of main magnets

- Systematic effects relevant for SX design
 - Amplitude-dependent tune shift (ADTS)
 - Momentum-dependence beyond chromaticity
 - Parasitic resonances
- Random effects left for error studies

Type of NL	Source	Effect	
Quadrupole fringe fields	Quadrupoles	ADTS in first order of the pseudo-octupole strengths	
Even multipoles	Allowed errors of quadrupoles	ADTS in first order of the multipole strengths	
Odd multipoles	Resonance sextupoles	ADTS in second order of the multipole strengths Momentum-dependent ADTS by feed-down from dispersion	
	Chromaticity sextupoles		
	Allowed errors of dipoles		
Sextupoles	Resonance sextupoles	Excitation of unwanted resonances	

Field Errors of Main Magnets

- General remarks on main magnets
 - Super-ferric magnets with small aperture
 - Field quality expected to be inferior to NC magnets
- Dipoles
 - All dipoles measured at GSI serial test facility
 - Multipole data available up to order 7
 - Average data based on 110 dipoles
 - B3 and B5 significant for SX
 - Allowed components included into SX design as systematic multipoles (B3, B5, B7)
 - Other components included in error studies

Quadrupoles

- Field measured by manufacturer
- Presently ~20 magnets measured
- Multipole data available up to order 10
- B6 unexpectedly large
- Allowed components included into SX design as systematic multipoles (B6, B10)
- Other components included in error studies

9

13.02.2024

Systematic Field Errors: Geometric Effects

- Main dipoles
 - Significant effect of higher orders in combination with other nonlinearities, e.g. chromaticity correction
 - Caused by creation of ADTS in second order of odd multipole strengths (6-pole, 10-pole, ...)

$$\begin{aligned} \frac{\partial \nu_x}{\partial J_x} &= -\frac{1}{16\pi} \sum_{j=1}^N \sum_{k=1}^N (b_3 L)_j (b_3 L)_k \beta_{xj}^{3/2} \beta_{xk}^{3/2} \\ &\times \left[\frac{3\cos\left(|\mu_{j \to k, x}| - \pi \nu_x\right)}{\sin\left(\pi \nu_x\right)} + \frac{\cos\left(|3\mu_{j \to k, x}| - 3\pi \nu_x\right)}{\sin\left(3\pi \nu_x\right)} \right] \end{aligned}$$

- Main quadrupoles
 - Both B6 and B10 cause ADTS in first order of multipole strength
 - Effect independent of presence of other nonlinearities, e.g. chromaticity correction

 Q'_x = − 12 linear dip(3) $Q'_{\chi} = -12 + dip(3)$ dip(357) $Q'_{x} = -12 + dip(357)$ 2 0 0 <u>mu///x</u> <u>_____</u>,χ -2 -2 _4 -4 -6 -8 -8 -10-10-12 -io -12 -2 X/õm

X/√μm

Dipole errors without and with chromaticity correction

GSI Helmholtzzentrum für Schwerionenforschung GmbH

SX-WS 5/SIS100 layout: nonlinear dynamics 13.02.2024 10

Systematic Field Errors: Chromatic Effects

- Main dipoles
 - Create even multipoles (4-pole, 8-pole, ...) by feed-down from dispersion
 - B3 (6-pole) reduces hor. chromaticity (tune-shift independent of amplitude)
 - Higher orders cause δ -dependent ADTS

δ -dependent ADTS from B5 (10-pole) error

$$a_{xx} = \frac{\partial Q_x}{\partial J_x} = \delta \cdot \frac{1}{16\pi^2} \sum_i k_{5,i} \eta_i \beta_{x,i}^2$$

- Main quadrupoles
 - No significant effects beyond chromaticity itself

linear dip(5) $\delta = +10^{-3}$ $dip(5) + \delta = +10^{-1}$ δ = −10^{−3} $dip(5) + \delta = -10^{-3}$ 2 0 0 <u>_____</u>,χ -2 -2 -6 -8 -8 -10-10-12 -io -12 -10 X/õm *X*/√μm

δ -dependence for same particle-tune without and with dipole B5

Chromaticity correction minimizes δ-dependence Separatrix size, angular spread at septum

KO SX with Systematic Field Errors

- Small separatrix size for high rigidities desired
 - Reduces power requirements on KO exciter

KO extraction with small chromaticity

Mitigation of geometric ADTS

- Compensated by octupole correctors
 - 2nd-order ADTS from strong chromaticity sextupoles
 - 1st-order ADTS from guad B6 and B10
- Settings may depend strongly on separatrix size
- Mitigation of chromatic ADTS
 - Dipole B5 like k3l \approx 2 on octupoles for δ = 10⁻³!
 - Compensation impossible with SIS100 correctors
 - Requires 10-pole magnets in dispersive location
 - May be considered as future upgrade
 - Increases angular spread for small tune distances
- No guarantee that acceptable settings can be found for any separatrix size

-2.5 ε,/µm -5.0-7.5 k31,__/m⁻² k4l/m⁻³ -10.0 -10 -5 0 5 $x/\sqrt{\mu m}$

n spread?

-5

 $x/\sqrt{\mu m}$

-10

Idea: start with simple scheme

of many nonlinear effects

- Tune-sweep SX with natural chromacity
 - Avoid strong chromaticity sextupoles
- Small emittance to keep angular spread low

KO SX in SIS100 requires precise control

Hard to observe or verify in the machine

A simple commissioning scheme?

- Questionable in presence of field errors
 - Strong influence for small tune distances
 - Curvature caused by quadrupoles' B6 and B10 increases spiral pitch
 - Momentum-dependent curvature caused by dipoles' B5 increases angular spread
 - Perhaps for tiny emittance and momentum spread?

Tune-sweep SX with baseline lattice

5

Ó

 $\Delta Q_x = 0.002$

COSE as Alternative Scheme

- Constant Optics Slow Extraction (COSE)
 - Momentum-driven scheme developed at CERN
 - Extraction induced by rigidity ramp Bp(t)
 - Requires sufficiently large chromaticity
 - Separatrix for single particle characterized by
 - fixed machine tune Q_x
 - time dependent $\delta(t) = 1 B\rho(t)/(qp)$

- COSE for SIS100 looks promising
 - Sufficiently small angular spread reachable
 - Tentative settings with different chromaticity
 - Small chromaticity: amplitude selection
 - Large chromaticity: momentum selection
 - Further studies needed to confirm applicability

Other NL Effects

Parasitic resonance constraining WP

- Vertical tune had to be moved to $Q_v = 17.4$
 - Original Q_v=17.8 not suitable for high intensities
- Coupling resonance excited by sextupoles
 - Driving term for Q_x+2Q_y now about equal to $3Q_x$
 - No compensation with existing magnets
- Luckily available space in Q_v appears sufficient
- Effect of random field errors
 - First error studies on KO SX performed
 - Orbit corrected for distortions by alignment errors
 - Error model for dipoles and quadrupoles based on spread of magnetic measurements
 - Design appears to be robust against errors

Courtesy A. Oeftiger, GSI

17 5

15

S. Sorge, B. Galnander et al., TUPM099, IPAC23

Challenges for Operation

- Higher-order effects play important role for SX from SIS100
 - Increased complexity due to required compensation of nonlinearities
- Challenge: simplified model for defining optimal settings
 - Large parameter space for control of SX parameters
 - Tunes (2) and chromaticities (2)
 - Distribution of resonance (6) and chromaticity (7) sextupole strengths
 - Choice of octupole (2) strengths
 - Solution not uniquely defined by SX parameters
 - Spiral step e.g. depends on resonance strength, tune distance and ADTS
 - Present results mostly obtained by 'educated tuning' in tracking simulations
 - Can we find a computationally faster yet sufficiently predictive model?
- Challenge: control of parameters in real machine
 - Far fewer observables than in simulations
 - Ambiguity in source of deviations for critical parameters (step/pitch)
 - How to commission SX with the least number of degrees of freedom?
 - How to introduce complexity in small steps?

Summary and Outlook

- SIS100 has tight constraints for SX due to optimization for low charge-state ions
- Nonlinearities including systematic magnet errors affect the dynamics significantly due to ADTS
- Robust settings for KO SX in the presence of field errors have been found
- COSE SX has been identified as a promising alternative scheme

- Explore COSE option further including error and sensitivity studies
- Try to find simplified model to reduce dependence on tracking
- Devise a reasonable commissioning scheme
- Study upgrade options for installing higher-order multipole correctors

Thanks for your attention!

Thanks to all who have contributed and continue to contribute to the development of slow extraction for FAIR.

GSI Helmholtzzentrum für Schwerionenforschung GmbH

SX-WS 5/SIS100 layout: nonlinear dynamics 13.02.2024 18