5th Slow Extraction Workshop at MedAustron in Wiener Neustadt

11-15 February 2024 TFZ Wiener Neustadt

Europe/Berlin timezone

Status Fast Spill Monitoring at the CERN SPS & Plans CMS North Area FT LHC F.Roncarolo, CERN SY-BI 2010 (27 km) Experiments TT20 Line ALICE LHCb TT41 Super Proton TI8 AWAKE TI2 S. Benitez, S.Mazzoni, D.Belohrad, S. Burger, Synchrotron (SPS) HiRadMat M.Martin, A.Goldblatt 2011 TT66 TT60 AD **ELENA** E.Calvo, E.Effinger, C.Zamantzas ISOLDE 2020 (31 m) 1992 BOOSTER - REX/HIE V.Kain, M.Fraser, F.M.Velotti, P.A. Arrutia Sota 2001/2015 n_TOF East Area F.Addesa, L.Esposito PS 1959 (628 m CLEAR LINAC 4 2020

LEIR

005 (78 m)

LINAC :

1994

CERN SPS for Fixed Target Experiments

Protons @ 400 GeV sent towards NA experiments via **Slow Extraction** process

- RF disabled at flat top, ideally fully de-bunched beam is sent to transfer line
- Spill '**quality**' affected at macro and micro-structure level by:
- hysteresis, non-reproducibility of momentum distribution, regulation and ripples of power supplies, spikes at RF switch-off

Spill Structure and quality

Monitoring the 'spill quality'

- Essential for spill control and successful physics in fixed target experiments
- Challenging, at first because single pass de-bunched beams can't be measured by standard synchrotron diagnostics as Beam Current Transformers

Spill Quality – Duty Factor

$$0 \le \mathscr{F} = \frac{\overline{I(t)}^2}{\overline{I^2}} = \frac{P_{DC}}{P_{Tot}} \le 1$$
(2.1)

For each interval Δt , the ideal case corresponds to a Poisson distribution for which

$$\overline{I} = \langle I \rangle = I_0 \cdot \frac{\Delta t}{T}$$
 with $I_0 = \int_0^T I(t) dt$ (2.2)

and the duty factor can be expressed as

$$\mathscr{F}_{Poisson}(\Delta t) = \left[1 + \frac{T}{I_0 \cdot \Delta t}\right]^{-1}$$
(2.3)

This is, again for each interval Δt , the upper limit of the real duty factor that can be written as

$$\mathscr{F}_{real}(\Delta t) = \left[1 + rac{\langle I(t)
angle}{\overline{I(t)}^2}\right]^{-1}.$$

Data in the plot was taken with the NA62 GTK detector. Both when comparing the particle-rate histograms and the duty factors, it is evident that the real spill performs significantly below the **Poisson limit**.

An upgrade of the spill monitors would allow to develop and optimise techniques to mitigate this difference.

Spill Monitoring Requirements - General

Table 1: Key parameters of interest for the SPS spill monitors requirements.

Parameter	Value or Range	Comment
Spill Duration	4.8 [s]	present operation
	1 [s]	future, e.g. PBC
Beam Intensity	1-400 [1e11p]	
Spectrum	$50\mathrm{Hz},100\mathrm{Hz}$	e.g. Noise, PC ripples
Harmonics	43.86 kHz	SPS 1^{st} and 2^{nd} Harmonics [*]
of interest	$476\mathrm{kHz}$	PS $1st$ Harmonic ^{**}
	$200\mathrm{MHz}$	RF capture
	$800\mathrm{MHz}$	RF long. blow-up
	$10\mathrm{GHz}$	Future, e.g. PBC

From few nA to few uA

From few Hz to

- 800 MHz (SPS NA CONS, short term)
- several GHz (PBC, long term)

* the SPS circulating beam structure includes $2 \times 10 \,\mu s$ injections, the *abort gap* for the dump kickers rise

^{**} the slow extracted beam can still contain a time structure from the PS (the SPS injector)

Spill Monitoring Requirements – DAQ

For NA CONS monitors == current developments

	Acquisition Mode				
	Slow	Fast	Ultra-fast		
Application	Autospill,	RF debunching	Empty-bucket		
	power-		channelling		
	converter				
	ripple				
$f_{bw} = rac{1}{2\Delta t}$ (MHz)	≥ 0.1	≥ 0.1 ≥ 10			
f_{centre} (MHz)	$f_{bw}/2$	≈ 200 ≈ 800			
$n {\sf triggers}$	1	\geq	10		
$T_{coverage}$ (ms)	Whole spill	nole spill ≥ 10 (per trigger)			
$T_{offload}$ (ms)	200 (example, see text)				
Phase information	Yes No				

Table 3.1: List of requirements for North-Area spill monitors data processing.

Slow and Fast Modes in Time Freq. Domain

Secondary Emission Monitor (SEM)	DC	\rightarrow 1-2 MHz
3 x Diamond Beam Loss Monitors (dBLM)	25 kHZ	→ 1-2 GHz
Optical Transition Radiation – Photomultiplier Monitor (OTR-PMT	DC 800 MH	→ 200 MHz z +- xx MHz

1. Secondary Emission Monitor (SEM)

- 2. 2 x Diamond Beam Loss Monitors (dBLM)
- 3. Optical Transition Radiation Photomultiplier Monitor (OTR-PMT)

Secondary Emission Monitor (SEM - BSI)

ø

SEM BSI = Aluminum foil Proton beam generates Secondary Electrons , pulled by bias (+200V) plates to minimize probability of electrons going back to BSI

Routinely used to **feedforward** magnet power converters and compensate **50-100Hz** ripples

Secondary Emission Monitor (SEM)

DAQ

- Amplifier in the tunnel (10MHz BW)
- CK50 cables (>200m)
- Low pass filter (1kHz) to suppress high freq noise
- VME ADC (100kHz BW, 200kS/s, 16bit)

Signal / Noise Ratio (before 2022)

- Low signal (SEY=~4%) and pickup noise
- SNR = ~ 4000 / 800 (p2p) [ADC counts] ~= 5 in this example, after low pass @ 1kHz

Refurbishment of in vacuum detector + cabling done beginning of 2023. No dramatic improvement. EMI pick-up noise (in vacuum) still suspect.

FR@SE Workshop – SPS Fast Spill Monitors – 13-Feb-24

- 1. Secondary Emission Monitor (SEM)
- 2. 3 x Diamond Beam Loss Monitors (dBLM)
- 3. Optical Transition Radiation Photomultiplier Monitor (OTR-PMT)

FR@SE Workshop – SPS Fast Spill Monitors – 13-Feb-2411

Diamond Beam Loss Monitors (dBLM)

- Chemical Vapor Deposition (CVD), 1cm x 1cm, 500um thick, Gold Coated
- Electron-Hole pairs from ionizing radiation traversing the substrate
- Used for many years in CERN synchrotrons (LHC, SPS, PS, PSB) and inj/extr beamlines
- Rad hard , Fast

- E. Calvo Giraldo et al., "The Diamond Beam Loss Monitoring System at CERN LHC and SPS", IBIC Proceedings, 2022. <u>TU2C2</u>
- H. Frais-Kolbl, E. Griesmayer, H. Kagan, and H. Pernegger, "A fast low-noise charged-particle CVD diamond detector," IEEE Transactions on Nuclear Science, vol. 51, no. 6,pp. 3833–3837, 2004, doi:10.1109/TNS.2004.839366
- B. Dehning, E. Effinger, H. Pernegger, D. Dobos, H. Frais-Kolbl, and E. Griesmayer, "Test of a Diamond Detector Using Unbunched Beam Halo Particles," CERN, Tech. Rep., 2010, https://cds.cern.ch/record/1258407

dBLM DAQ

System fully integrated into CERN control system, data logged

dBLM – Measurement Example

Measurements achieved after subtracting average signal spectrum without beam

P. A. Arrutia Sota et al. "dBlms first results and md planning, presentation at CERN SLAG" (2022), https://indico.cern.ch/event/1155679

- 1. Secondary Emission Monitor (SEM)
- 2. 2 x Diamond Beam Loss Monitors (dBLM)
- 3. Optical Transition Radiation Photomultiplier Monitor (OTR-PMT)

Optical Transition Radiation (OTR) – Photomultiplier (PMT)

Concept: count (instead of 'standard' imaging) photons from OTR

2021-2022:

Old system refurbished with new Ti screen, PMT and amplifier

2022-2023

- Test measurements via non-operational DAQ (next slide)
- From the start we could measure spill structure and power spectrum from DC to 300 MHz
- High signal even with OTR screen OUT → System sensitive to beam losses
- Small signal increase with screen IN → captured OTR radiation < than expected

PMT – OTR DAQ 2022-2023

- Fast PMT ~ 0.8 ns anode pulse rise time
- Wide band (DC-300MHz) amplifier @ PMT output
- CK50 cables to surface (>200m)
- Signal duplicated to 2 separate PicoScope® digitizers (500MHz BW, 5GS/s, 2GS Memory)
 - 1. Set at ~low rate (e.g. 1MHz) to cover all spill (5sec)
 - 2. Set at high rate (e.g. 625MHz) to cover 'chunks' of 1-10 ms along the spill
- PicoScope® USB connection to Linux PC integrated into CERN control system (FESA)

OTR – PMT (example with fs=1MHz)

PMT-OTR

43380

SPS frev

OTR - PMT (example with fs=625 MHz)

Scanned trigger delay to measure 200 MHz harmonic along the spill (here only first part of the spill)

Comparison between SEM and OTR-PMT systems

OTR-PMT vs SEM Binning both monitors in equal time intervals

@ 20 ms

@ 1 ms (Zoom on Start of the Spill)

Impressive agreement between two systems based on different detector, DAQ and 30m apart

OTR-PMT vs SEM SEM © 50 kHz (20us), no binning OTR-PMT © 1MHz binned © 50 kHz (20us)

As expected from **SEM** setup: **low pass filter (1kHz) reduces overall BW**, even when sampling at higher rate (50 kHz in this example)

OTR-PMT gives same envelope (100Hz beam intensity fluctuations) **but also measures higher frequency** beam intensity fluctuations

OTR-PMT system limitations

Location with 'high' losses

Limited diagnostics to check OTR screen and optics alignment

Test DAQ based on 'PicoScopes'

- → PMT ageing
- → difficult to quantify and optimize OTR radiation detection efficiency
- → No possibility for signal conditioning / processing before and after digitization (like with FPGA based DAQs)

OTR-PMT – screen IN vs screen OUT

After many tests to compare the signal integrated with the screen IN w.r.t. screen OUT, including

- PMT voltage scans
- Proton beam steering on the screen
- Diffusing or focusing radiation on PMT
- → Kept on seeing small changes with screen IN or OUT
- → Either very large losses or very low OTR collection efficiency (or large error on simulations of expected number of OTR photons production)

OTR-PMT – screen IN vs screen OUT

December 2023: inspection of screen installation revealed quite a large **misalignment (3 to 5 degrees)** w.r.t. nominal 45 degrees w.r.t. beam trajectory

- \rightarrow Simulations indicate that radiation collection efficiency only few %
- \rightarrow This quite 'big' issue could mean 'very good' news
- Alignment for 2024 carefully checked during shutdown + will have diagnostics to check on-line (See later slides)

OTR-PMT – PMT ageing

2023 operation / tests with increased HV and high proton losses evidenced the PMT ageing

→ 30-40% signal (normalized to extracted intensity) degradation in Sep w.r.t. Apr/May

OTR-PMT – Radiation Maps

We looked at available radiation surveys and indeed the present detector location is not favorable.

OTR-PMT system refurbishment for 2024 run

Move detector at location with less expected losses New detector layout including camera for imaging OTR light New VME DAQ

OTR-PMT – New Location, New Layout

- The fast spill monitor system was moved to another existing screen station, where 2023 losses where much less
- More robust optical design
- Added translation stage hosting PMT and Imaging camera, will be possible to check OTR photons are focused on sensor.

New VME DAQ

- After formalizing the function specifications for the short term (see initial slides):
 - Developed, produced and installed (2023-24 winter shutdown) new VME ADC expected to fulfill requirements up to 800 MHz
 - Few words on how we managed to arrive here in the next two slides

DAQ – from Functional to Engineering Specs

Acquisition Mode	Sampling Rate	Storage Needed	Ccomments / Remarks
Slow	> 200kHz	32 Mbits	 Suitable for ADCs with a sampling frequency > 200kHz. Can increase sampling rate and memory for better frequency or temporal resolution.
Fast (up to 200MHz)	≥ 400 MHz	64 Gbits	• Requires ADC with minimum 400 MHz sampling rate and sequential triggering mechanism to reduce data storage needs.
Ultra-fast (800MHz)	≤ 1.6 GHz	Depends	 Can be under-sampled if the ADC and signal path support it. Alternatively, a fast ADC at > 1.6 GHz can be used, or the 800 MHz frequency can be down-mixed to a compatible band for Fast mode.

DAQ – Implementation

4.1.2 Implementation

Figure 4.1: System-level schematic of the implemented COTS DAQ

New VME DAQ based on CERN BI carrier board (VFC) with 500MS/s FMC ADC

- Designed for DC-200MHz + 800MHz (down conversion to 125MHz) +-100MHz
- installed, to be commissioned with beam

Fast mode trigger and timing logic

DAQ – VFC + FMC ADC specs

Parameter	Comment
Communication interface	VME64x multiplexed block transfer (MBLT)
External memory	2×8 Gbit DDR3
FPGA	115kLE Arria V GX
FPGA internal memory	15 Mbits
MGTs	8× 6.25 GBPS
ADC Sampling rate	500 MSPS
ADC Channels	4
ADC ENOB	pprox 9.5
ADC SFDR	$\geq 70~{ m dBc}$ for f \leq 250 MHz

Table 4.1: Properties of the DAQ composed of VFC and FMC-500 ADC module.

PLANS (to go to xx GHz)

Plans towards xx GHz range (DAQ side)

On-going studies (conceptual + few lab tests for the moment

Option	Pros	Cons
ATCA	High-speed communication channels, used in CERN experiments	Expensive, requires minimum configuration, not cost-effective for isolated system
SoC (RFSoC)	Flexibility in choosing ADCs, local communication between ARM CPU and FPGA	Existing modules have low memory, limited availability of larger memory options
PCIe	Widely used standard, high-speed data transfer, supports DMA	Requires PCIe form-factor FPGA carrier with sufficient memory, limited module options with large memory

Towards xx GHz (Detector Side)

Cherenkov detector for proton Flux Measurement (CpFM)

FR@SE Workshop – SPS Fast Spill Monitors – 13-Feb-24 35

Plans towards xx GHz range (Detector side)

Cherenkov detector for proton Flux Measurement(CpFM)

In vacuum quartz bar producing Cherenkov light

- System evolution of one used with low particle flux for crystal assisted extraction
- Can go to few GHz at least (as OTR-PMT, but with better SNR)
- Validated in 2018 with custom made DAQ

Cobra CompuScope Family Next-Generation High-Speed Digitizers for the PCI Express and PCI Bus Upgraded in Sept 2018 2-CH 8 bit digitizer max sampling rate 2GS/s Extracted Beam PMT Divider changed: transistorized divider (LHCb CALO) quartz bar $5 \times 10 \times 290 \, mm^3$ ~~~~~~ Fresh R7378A PMT (radiation aging of the old one) quartz vacuum-air ~~~~~ optical interface Motorized bellow Requirements PMT+DIVIDER+FILTER - Non-degassing materials (primary vacuum) tested in lab with a diode - Challenging particle rate: 4E12 up to 4E13 p/s laser source up to 100 MHz - Radiation hardness (~ 3kGy per year) - Timing: possibility to resolve 200MHz time structures in the extracted beam **UV-NIR Optical filter mounted:** 1E-04 F.M Addesa

F. M. Addesa et al. "In-vacuum Cherenkov light detectors for crystal-assisted beam manipulations,"

https://cds.cern.ch/record/2661725

Plan

- Resurrect system
- Study ultimate bandwidth
- Propose ~standard DAQs

FR@SE Workshop – SPS Fast Spill Monitors – 13-Feb-24

Cherenkov detector (CpFM) – Status

New phase of tests could start end of 2023

- The status of the PMT has been checked with photon source in tunnel → ok
 - Being connected to 'Picoscope'
- The stepper motor, connections of HV functional and integrated in control system.
- Installed a new cover, to ensure light tightness.
 - The dark counts have been measured. The setup is ready and waiting for the beam to measure.

2024 tests will lead to next phase towards fulfilling multi-GHz requirements, with possible options

- Consolidate / upgrade present system
- Start new design based on same technology, e.g. less invasive radiator, different radiator
- Look at other techniques

All this within Physics Beyond Colliders (PBC) project

Outlook / General Remarks

- SEM detector is robust in measuring 50-100 Hz, SNR limited
- dBLMs surely suitable for high freq. measurements. Poor SNR to be understood
- OTR-PMT:
 - proved to work (as BLM ...) up to 200MHz
 - 2024: explore 800MHz, with new VME DAQ. If all ok, port it to 'operational' state
- For all monitors: maximizing SNR, identifying and mitigating different sources of noise, EMI and background
 - If some of them are confirmed to be 'local', consider new locations (as already done for ORT-PMT)
- Going to > 1GHz range implies DAQ upgrades (e.g. optical signal transmission) and/or new techniques (e.g. optical systems like CpFM)
 - efforts on fast DAQs will be applicable to different techniques.
- Depending on existing monitors progress, alternative/complementary methods (gas scintillation, gas ionization) can be considered, not discussed today

BACKUP / SUPPORT / REFERNECE SLIDES

FR@SE Workshop – SPS Fast Spill Monitors – 13-Feb39 24

Limitations and plans

System	Limitation(s) that can be improved	Plan
SEM	SNR, Analog BW and Sampling rate	Refurbish in vacuum detector ,consider new amplifier and ADC, aim a removing 1kHz filter
dBLM	SNR	More beam based studies in TT20 Consider option of mono-crystalline detector + amplifier decoupling low and high frequencies ?
OTR-PMT	High signal with screen OUT	Dedicated beam based studies (signal vs beam position) Move or Duplicate PMT (away from losses)
Gas Scintillation	-	Study expected signal levels at SPS
Cherenkov Detector	-	Resurrect system Study fast DAQ that can be integrated into CERN control system

Summary (with present implementations)

System	Analog BW	Sampling	Max Acq Period
SEM	10 MHz (amplifier) 1 kHz (LP filter)	Up to 200 kS/s	Full Spill
dBLM	2 GHz Amplifier 500 MHz Digitizer Low Cutoff @ ~25kHz	650 MS/s (fixed)	Xxx ms
OTR-PMT	300 MHz Amplifier 500 MHz Digitizer	Up to 5 GS/s	Full spill @ few MHz ~ 3ms @ 5GS/s

The 3 systems have long Cu cables also limiting BW to < 500MHz

Digitization in the tunnel and optical signal transmission is under study (see backup slide)

OTR - PMT

 Resulted to be very sensitive to beam losses during physics (>1e13 p/spill) even if PMT is 1m away. Plan: move or duplicate PMT and to be dominated by OTR w.r.t. losses

OTR – PMT – Fast DAQ studies

- New acquisition system based on VFC+ FMC ADC
- single channel acquisition
- fast sampling mode with selectable down sampling:
 - 500MS/s @ ~2 seconds of data storage
 - 250MS/s @ ~4 seconds of data storage
- slow sampling mode, e.g. 200kHz up to 2 MHz: still to be defined how long acquisition can be stored:
 - DDR memories store fast sampling data
 - FPGA internal memory is 64MBits \rightarrow 1MSample \rightarrow 5.2seconds

Duty Factor

Gas Spill Detector @ CERN PS 24 GeV protons

- Based on detecting light emitted by beam-gas interaction
- Tank filled with Nitrogen, ~22m from extraction point
- Decay time ~ 10ns
- Two PMTs in coincidence (to suppress noise)
- Analog pulses converted to NIM-standard (30 ns, -1 V) and sampled at 2 kHz
- DAQ: 10 kHz possible, now set to 2.5kHz
 - Ultimate BW now anyhow limited by present cables and VME bus
- TDC based DAQ under study, could reach 1 MHz

Plan (depending on resources and priorities): Study signal levels and feasibility @ SPS 400 GeV

000:Acquisition:countCoincidenceArray-(2021-09-29T16:58:10.300Z

dBLM

		Comments/Remarks
Detector / Method	pCVD crystals	
Max Sampling Freq	650 MHz	BI standard carrier board (VFC) + 2 Ch-650 MS/s FMC ADC
Analog BW	Better than ~200 MHz (detector response)	Well suited @ LHC for ghost and satellite bunch measurements
Maximum acquisition window	Few ms (limited by memory buffers and logging DB restrictions)	
S/N	To be fully assessed	Noise in TT20 higher than ~all other CERN dBLM locations

OTR - PMT

		Comments/Remarks	Plans
Detector / Method	OTR from Ti screen	With FT physics beams: see signal without screen == losses on PMT	Bring existing PMT (or add second PMT) away from beam pipe to be less sensitive to direct losses
Analog BW	500 MHz (Picoscope) 200 MHz amplifier	Can look at faster amplifier (or remove it)	Longer term studies:
Max Sampling Freq	5 GS/s (Picoscope)	Signal split to two scopes in parallel to	 VME digitizer (next slide) digitize in the tunnel and optical signal transmission
Maximum acquisition window	Full spill (at ~low rate e.g. 1MHz) 10mS @ 625 MHz	have: -chunk at high rate -full spill at low rate	Signal transmission
S/N	160e-3 [p2p] /1 [V] = 1./ 0.160	Low noise	

Secondary Emission Monitor (SEM - BSI)

		Comments/Remarks	Plans
Detector / Method	Electrons Secondary Emission from Al Foil	SEY (few 1e-2) changes with radiation and vacuum history	Refurbishments with new detectors assembly in YETS 2022-23
Max Sampling Freq	200 kHz	Can upgrade to faster ADC	
Analog BW	~10 MHz (Ampli) ~kHz (analog filter)	Both can be made faster if S/N allows	Amplifier tests in the lab, BW studies
Maximum acquisition window	Full Spill		
S/N	~ 4000 / 800 (p2p) [ADC counts] ~= 5	50 Hz also with no beam	Noise studies in the lab

Secondary Emission Monitors (SEM)

~80 monitors + ~50 in target boxes – DAQ sampling @ 50Hz

Diamond Beam Loss Monitors (dBLM)

2 dBLM installed in SPS (@electrostatic septum and @transf. line quad)

E. Calvo, E.Effinger, C.Zamantzas et al.

1

BLMDIAMONDVFC 1.24.0.LTI

BLMDIAMONDVFC 1.24 Device Selection BLMDIAMONDVI 🗵 🛉 🗂 BLMDIAMON

Diamond BLMs

No k	beam, during	7960 - 7940 - 7920 -	A dkul k	(A ^{DW} P) AND	P NAMARA ANA ANA ANA
ACC	ess 13 July		0.0000	0.0005	0.0010 0 Time [s] 2022-07-13 12:46:50
	Navigation Tool 2019-LN4-BASELINE(v3.2.22)	3 0 -	1		
MDIAMONDVFC 1.24.0,LTIM 6.2.1,LTIM 6.1.1, and 3 LMDIAMONDVFC 1.24.0,LTIM 6.2.1,LTIM 6	imore Launcher Load Watch Dir Query				
Device Selection	SUBScope SX.FAST-SPILI-TT20 ESESPS_BA2_SFTPR01 SP.BA2.BLADIAMOND.2_SFTPR01 element Setting Capture element Setting Element Setting Capture element Setting Element	-100 ·			
SP. BA2. BLMDIAMONDVFC 1.24.0 SP. BA2. BLMDIAMOND CD00000000000000000000000000000000000	Context acqbtamp: 2022/07/13 14:04:54:366600000+0200 cycleHame: srstusER:SFTRO1 cycleHam: srstusER:SFTRO1 cycleHam: srstusER:SFTRO1	-200 -		Index	
P	buffersFreeze int8_t 1	ς.			
2 SPS. BLMD. CAPFRZ. BA	CaptureUTCTImestampUSeconds int64_t 395954	-300 -	liter in an in a	AND A REAL PROPERTY.	a national design and the second sector is a second
	a channelGains enum [LOW,LOW]		beer a second	AL IL JURAN	and real the rile of the state of
Cycle Selection	monitor/Vames String() SPS.BLMD.21672,BLMD.210558	-400 -			
SPS.USER.ZERO	Image: Base of the second s		0	50 100	150
SPS.USER.SFTPR01 SPS.USER.SFTPR02	▲ □ rawBuf1 int16_t[] [7974,7980,7980,7982,7976,7974,7978,7969,7973,7972,7]				Freq [MHz]
SPS.USER.MD5	Image: state				2022-07-13 12:46:50
SFS.USER.SFTION2 SPS.USER.SFTION3 SPS.USER.SFTION4	awbufflags1 int8_t[] [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-200 -		1	2022 07 15 12.40.50
	Viewers	-220 -			
Property Selection (dbl-clk = n	All -viewers- Clobal tab			14	1
AcquisitionIntegral	Get Get Next Published Subscribe	-240 ·	ht faw alle dt litter, be	بمالا يلايا الاسل طنا المرتم والأل	Betchi telle della la bratitional al State a secult
AcquisitionIntegralDist AcquisitionBawDist		E 360	ALC: NOT DO M	- DAI TRAVELLORGAN	
AcquisitionTurnLoss		12 -200	A State of the second	اللغم بالدينا يجدلان	And A. M. M. Mitsundin
GeneralInformation	There are no active viewers	ĕ −280 -			
2+ ResetCapture		5			
		-300 -			
Class BEMDIAMONDVFC Version 1.24.0	No help available			· [] ·	
FEC C_DU.cfv-ba2-bimdiamond		-320 -		1	1990 - Carlo Ca
			199.8 2	200.2	200.4 200.6
<none> *</none>	history				Freq [MHz]

2022-07-13 12:46:50

200.8

201.0

201.2

Diamond BLMs

Diamond BLMs

• Evolution of the 200 MHz Harmonic during the spill (Pablo A., 11 May)

Spill Shape Reconstruction in the EAST Area

- Spill Shape Reconstruction in the EAST Area through the mixed-secondary radiation field produced by beam-target collisions at CHARM
- pCVD dBLM placed inside CHARM irradiation room
- Data acquisition with an oscilloscope in the control room
- AC signal dBLM noise discrimination, data partitioning in 20 ms, distribution of number of events throughout the 450ms proton bunch → spill shape reconstruction
- Analysis of the spill shape consistency over hundreds of multiple consecutive acquisitions in each CHARM positions
- Comparison of the spill shape reconstructed by the dBLM with a IC BLM placed on a standing pole
- Cross-validation of the analysis with XSEC Data:
 - F61.XSEC.023

T08.XSEC.070

- Most of the spills' shape reconstructed by the dBLM are in good agreement with the SEC!
- T08.XSEC.094
- This method to reconstruct the spill shape with the dBLM has been validated in all CHARM positions!
 - Tests in R13 are still ongoing to further investigate the feasibility of the analysis in harsh positions

Roberta Provvedi (BE/CEM-EPR), Salvatore Fiore (BE/CEM-EPR), Salvatore Danzeca (BE/CEM-EPR)

OTR - PMT

With present setup

- full spill at low rate (few MHz, ideal to see 50-100Hz in one shot)
- chunks
 - ✓ up to few ms at high rate (e.g. 500-600MHz) to properly sample the 200MHz harmonic

 ✓ Fractions of ms up to 5 GHz sampling rate

Spill Detectors Locations

