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Transit Time Studies

How long does a particle take to reach the 
septa once it is outside the stable region?

How does the transit time change if  you 
continue squeezing the separatrix as the 
particle still transits?

How does the transit time depend on the area 
of  the stable region and other operational 
parameters?

Transit time study is crucial because it determines the beam response time for the extraction.
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Kobayashi Hamiltonian

The dynamics of  third-integer resonance can be 
extracted from the Kobayashi Hamiltonian1:

# = 3&'( !! + !"! + *4 3!!"! − !#

Linear term Non-linear term

This simplified Hamiltonian contains only first power in '(.
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For a more detailed review, refer to Marco Pullia’s PhD thesis titled “Dynamics of Slow Extraction and and its 
influence on transfer line designs”. 
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Strategy to get transit time

• Get the equation of  motion for ! and !′ through 
solving:

"#
"$ =

%&
%#!    and     "#

!

"$	 = − %&
%#

• Since the Hamiltonian is a constant of  motion, 

 % !( , !() ; ( = % !, !); ( + Δ(

• Eliminate !) in terms of  ! using the above equality.

• Now plug in !′ gotten from the above step into 
"#
"$ =

%&
%#! to get a RHS purely in terms of  !.
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Kobayashi Hamiltonian Translated

$ = 3'() *" + *$" + ,
4 3**$" − *#

It is convenient to analyze the transit time when we move on of the vertices to origin.

* → * − ℎ      and     *$ → *$ + %
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Kobayashi Hamiltonian Translated

! = 3$%& '* + ')* + )4 3'')* − '+

' → '	 − ℎ      and     ') → ') + ,
*

!-.,$/ = 3$%& ' − ℎ * + ') + /2
*
+ )4 3( ' − ℎ *) ') + /2

*
− (' − ℎ)+

= )
4 [	3ℎ'

* + 3ℎ+ − 6'ℎ* + 3ℎ')* + 9ℎ+ + 2 3ℎ') 3ℎ

	 +	3'') + 9'ℎ* + 6 3'')ℎ	 − 3ℎ')* − 9ℎ+ − 6 3ℎ*')
    
                                                       −	'+ + 3'*ℎ − 3ℎ*' + ℎ+]	
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Translated Kobayashi Hamiltonian

% = 3-./ !* + !)* +
0
4 3!!)* − !+

! → !	 − ℎ      and     !) → !) + ,
*

%-.,$/ = 3-./ ! − ℎ * + !) +
5
2

*
+
0
4 3( ! − ℎ *) !) +

5
2

*
− (! − ℎ)+

%-.,$/ =
0
1 [	6ℎ!

* + 4ℎ+ + 	3!!)* + 6 3!!)ℎ	 −	!+]
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Equation of  motion

From the above Hamiltonian, 
we get the ! evolution equation as:

23
24 =

%&"#$%&
%#!  

23
24 =

50
1 	!!) + 3!ℎ	

%-.,$/ =
0
1 [	3ℎ!

* + 3ℎ+ + 	3!!)* + 6 3!!)ℎ	 −	!+ + 3!*ℎ	 + ℎ+]
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Next is to eliminate !) and get the X evolution purely in terms of  !.
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Equation of  motion

We can prove that the Hamiltonian is a constant of  motion (one way is to verify using Poisson 
brackets).  

!) =
!(* + 3!(!() − !*

3!

%-.,$/ =
0
1 [	3ℎ!

* + 3ℎ+ + 	3!!)* + 6 3!!)ℎ	 −	!+ + 3!*ℎ	 + ℎ+]

Thus,

&

'
[	3ℎ*" + 3ℎ# + 	3**$" + 6 3**$ℎ	 −	*# + 3*"ℎ	 + ℎ#] = &

'
[	3ℎ*(" + 3ℎ# + 	3*(*($" + 6 3*(*($ℎ	 −	*(# + 3*("ℎ	 + ℎ#]

! '(, '() ; 9 = ! ', '); 9 + Δ9
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Equation of  motion

!) =
!(* + 3!(!() − !*

3!
Plugging this into the X-evolution equation, we get:

dX
dn =

60
4 	!!) + 3!ℎ	

dX
dn =

60
4 	!

!(* + 3!(!() − !*

3!
+ 3!ℎ	

dX
dn =

60
4

!(* + 3!(!() − !*

3
+ 3!ℎ	

dX
dn = >(X) (say)
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dX
dn = f(X)

dn = >(!) 67@!

;-- = <
#)

#*+,- )
4 6 3ℎ' + 6

3	'(
* + 6	'('() 	−

6
3'

*
67
='

Can be integrated by completing the squares:

< 1
/?* + @? + A 	=? =

1
@* − 4/A log

2/? + @ − @* − 4/A
2/? + @ + @* − 4/A

t1

!!
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.

!′

! !#
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Equation of  motion
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Kobayashi Hamiltonian

;-- = <
#)

#*+,- )
4 6 3ℎ' + 6

3	'(
* + 6	'('() 	−

6
3'

*
67
='

!'' =
2
3%

1

9ℎ( +4(,)( + 3,),)*)
log

−2, +3ℎ − 9ℎ( +4 ,)( + 3,),)*

−2,+3ℎ + 9ℎ( +4 ,)( + 3,),)*
+)

+*+,- Septum

t1
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This is the analytical expression for transit time of particles when the resonance condition remains constant 
throughout the extraction, i.e., the separatrix size does not change. 
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Ideal Quad Ramp

for k = 0 .05% + A8 ∗ CDD9:$  
(with A8  = 0.1 → 0.01)

The quad ramp for “ideal spill 
rate” (with error tolerance of  5%) 
was obtained using an adaptive 
learning algorithm and particle 
tracking.

ν4;< 	= ν=>2	(1 ± k%) 
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Ideal Quad Ramp

for k = 0 .05% + A8 ∗ CDD9:$  
(with A8  = 0.1 → 0.01)

The quad ramp for “ideal spill 
rate” (with error tolerance of  5%) 
was obtained using an adaptive 
learning algorithm and particle 
tracking.
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Computing the analytical transit time

.!! =
2

32

1

9ℎ" + 4(9#
"
+ 39#9#

$
)

log

−29 + 3ℎ − 9ℎ" + 4 9#
"
+ 39#9#

$

−29 + 3ℎ + 9ℎ" + 4 9#
"
+ 39#9#

$

%!

%"#$%

Transit Time:

Plugging in sample Mu2e extraction numbers:
 
• ,,-.' = (12 − ℎ) mm
• ℎ = (

/
0123
4

• 23 = 9.650 → 9.666 (acquired from slow 
regulation quad ramp)

• S = 500 T/m^2 
• ℎ565 = 7?@?

( / ≈ 2.6	;;
• <565 ≈ 9.2	mm (approximation)
• ,) and ,′) chosen from distribution at vertex
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Computing the analytical transit time

.!! =
2

32

1

9ℎ" + 4(9#
"
+ 39#9#

$
)

log

−29 + 3ℎ − 9ℎ" + 4 9#
"
+ 39#9#

$

−29 + 3ℎ + 9ℎ" + 4 9#
"
+ 39#9#

$

%!

%"#$%

Transit Time:

Plugging in sample Mu2e extraction numbers:
 
• ,,-.' = (12 − ℎ) mm
• ℎ = (

/
0123
4

• 23 = 9.650 → 9.666 (acquired from slow 
regulation quad ramp)

• S = 500 T/m^2 
• ℎ565 = 7?@?

( / ≈ 2.6	;;
• <565 ≈ 9.2	mm (approximation)
• ,) and ,′) chosen from distribution at vertex

We get the analytical transit time curve to be:
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Particle Tracking to check Transit Time

To verify the transit time expression through simulation, we prepared 
our initial distribution to avoid statistical noises from the beam halo. 
Particle tracking was done using 4 millions particles.

The initial distribution was prepared by running a 
normal distribution of particles at a constant tune 
of 4A = 9.650 for 2000 turns until all the halo is 
extracted.

Simulation strategy:

• Get the ideal tune ramp curve from Slow 
Regulation simulations.

• Squeeze the tune from ∆4 = 4! → 4" using the 
tune ramp  curve.

• Store at the number of particles extracted at 
each turn, including the transit time.

• Iterate this for all the 430 time steps until ∆4 
goes to zero. 

Input sample used for particle 
tracking.
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Simulation result
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Analytical Calculation
Numerical Particle Tracking
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Simulation result
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Dynamic Transit Time

The transit time function derived earlier was for when the resonance condition remains static 
throughout the extraction process, i.e., the stable region’s size does not change while the 
particles are still in transition.
However, often in reality, the resonant extraction process is a 
continuous one where the stable region is not static but changes 
dynamically with time. 

This begs the question: how does the transit time change 
with the separatrices are shrinking?

We can start from the evolution equation of ,:

dX
dn =

%
4 6 3ℎ, + 6

3
	,)( + 6	,),)* 	−

6
3
,(

Since the particles that will get extracted first are the ones 
near the vertex of the triangle close to the septum, let us 
assume ,) = 0 and ,)* = 3,).

Plugging in:

dX
dn =

%
4 6 3ℎ − 6

3
,( = 3%

2 3
	(3ℎ, − ,()

t2

t1

?B =	?

!"

!
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Dynamic Transit Time

Since the tune will be ramped towards resonant tune throughout the spill, the separatrix will 
be shrinking with the same velocity, given by:

ℎ̇ = −4C%
D3
DE

Since this velocity is in the opposite direction of the 
particle’s direction (because the particle is moving away 
from the separatrix), we add this to the D,/DE :

dX
dn =

3%
2 3

3ℎ, − ,( + 4C%
D3
DE

t2
t1

?B =	?

!"

!
ℎ̇

Now we invert the above equation and integrate to find the transit 
time T889 =	∫ DE

!::	<=6 = ∫ DE = I
>+)?

>+*+,-? 1
3%
2 3ℎ, − ,( + 4C%

D3
DE

	D,
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!::	<=6 = ∫DE = I
>+)?

>+*+,-? 1
3%
2 3ℎ, −,( +4C%

D3
DE

	D,

!''	<=6 =
2

6 3C23
1

9ℎ( + 4(,)( + 3,),)*)
log

2
3
,,-.'
ℎ 	− 2

323
D3
DE

2
3
,)
ℎ + 2 3	− 1

9C23(
D3
DE

2
3
,)
ℎ − 2

323
D3
DE

2
3
,,-.'
ℎ + 2 3	− 1

9C23(
D3
DE +)

+*+,-

Analytical Expression for Transit Time (Dynamic 
case)

We can solve this again by completing the squares.
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Plugging in Mu2e extraction numbers:
 

• ,,-.' = (12 − ℎ) mm
• ℎ = (

/
0123
4

• Nturns = 500
• 23 = 6C	×	K[M: M + 7]	values repeated 60 

times (because 500/60 ≈ 8)
• 23̇ = 6C	× K M − K M + 1
• ℎ565 = <565/2 3
• <565 ≈ 9.2	mm (approximation)

.!!	'() =
2

6 3EFG

1

9ℎ" + 4(9#
"
+ 39#9#

$
)

log

2

3

9*+,!
ℎ

	−
2

3FG

IG

IJ

2

3

9#
ℎ
+ 2 3	−

1

9EFG"
IG

IJ

2

3

9#
ℎ
−

2

3FG

IG

IJ

2

3

9*+,!
ℎ

+ 2 3	−
1

9EFG"
IG

IJ %!

%"#$%

Dynamic TT is faster than static TT.

Comparison of  the analytical transit time with simulation
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Comparison of  the analytical transit time with simulation
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Distribution Preparation

To compare the transit time of particles in the upper 
and lower band just outside the separatrix, an initial 
distribution was prepared. 

Distribution preparation could be challenging and 
time consuming since we require an infinitesimally 
thin slice of particles.

To achieve this, the distribution was prepared by 
squeezing the tune by 0.000128 (equivalent of about 
200 turns worth of tune change). 

This was achieved by assigning particle ID to each 
particle and backtracking the extracted slice. 

# of extracted particles ~ 600,000
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Particle TT in upper and lower slice
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How does the simulation compare to 
analytical expression?
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Particle TT in upper and lower slice



Prediction = 37 turns
Simulation = 33 turns

Simulation = 33 turns

Prediction = 81 turns
Simulation = 84 turns

Analytical Calculation vs Simulation 
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Prediction = 38 turns
Simulation = 33 turns

Simulation = 33 turns

Prediction = 153 turns
Simulation = 156 turns

Analytical Calculation vs Simulation 
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Analytical Calculation vs Simulation 
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Tune squeeze of 20 turns

Turns
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A tune change of 0.0000128 
was done and 300,000 particles 
were extracted. 



Tune squeeze of 20 turns
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Simulation = 46 turns
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Simulation = 202 turns
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Analytical Calculation vs Simulation 



Tune squeeze of 20 turns
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Analytical Calculation vs Simulation 



Distribution Preparation for Delivery Ring Scenario

SS10-60 SS40-50

SS20-30

RFK
O 

kick
er

For the resonant extraction for Mu2e, we have three 
dedicated fast ramping quadrupoles and six  
harmonic sextupoles (set of three sextupoles) in the 
straight sections. 

To simulate the transit time, the ideal lattice file was 
used to get phase advances between the observation 
point and the sextupoles.

K-

K"

K.

Q@ +Q( +Q/ = 9.666− 2K

Q( ≈
C
6

We use the relative strength of B! and  B" to 
rotate and orient the separatrix efficiently. 
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IN PROGRESS
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Future Directions

• Compute the analytical histogram for all the extracted particles and 
compare against the histogram gotten from tracking simulation.

• Derive an expression for a truer Hamiltonian that contains higher 
orders in '(,	derive the equations of  motion, derive the transit time 
and compare it against the Kobayashi Hamiltonian transit time.

• Investigate the effects of  intensity dependent effects on transit time 
(and how one could incorporate space charge in the SX Hamiltonian) 
and compare with space charge tracking numerical simulations.

• Investigate ways of  validating transit time not just through tracking but 
with the real beam.
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THANK YOU


