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Transit Time Studies

How long does a particle take to reach the septa once it 
is outside the stable region?

How does the transit time change if  you continue 
squeezing the separatrix as the particle still transits?

How does the transit time depend on the area of  the 
stable region and other operational parameters?

Transit time study is crucial because it determines the beam response time for the 
extraction.
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Kobayashi Hamiltonian

The dynamics of  third-integer resonance can be 
extracted from the Kobayashi Hamiltonian1:

𝐻 = 3𝜋𝛿𝑄 𝑋! + 𝑋"! +
𝑆
4
3𝑋𝑋"! − 𝑋#

Linear term Non-linear term

This simplified Hamiltonian contains only first power in 𝛿𝑄.
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For a more detailed review, refer to Marco Pullia’s PhD thesis titled “Dynamics of Slow Extraction and and its influence on transfer line designs”. 
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Strategy to get transit time

• Get the equation of  motion for 𝑋 and 𝑋′ through 
solving:

!"
!#
= $%

$"$
    and     !"

$

!#	
= − $%

$"

• Since the Hamiltonian is a constant of  motion, 

 𝐻 𝑋', 𝑋'( ; 𝑛 = 𝐻 𝑋, 𝑋(; 𝑛 + Δ𝑛

• Eliminate 𝑋( in terms of  𝑋 using the above equality.

• Now plug in 𝑋′ gotten from the above step into !"
!#
=

$%
$"$

 to get a RHS purely in terms of  𝑋.
Septum
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Kobayashi Hamiltonian Translated

𝐻 = 3𝜋𝛿𝑄 𝑋! + 𝑋"! +
𝑆
4
3𝑋𝑋"! − 𝑋#

It is convenient to analyze the transit time when we move on of  the vertices to origin.

𝑋 → 𝑋 − ℎ      and     𝑋" → 𝑋" + $
!

𝑃"

𝑋′

𝑋
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Kobayashi Hamiltonian Translated

𝐻 = 3𝜋𝛿𝑄 𝑋! + 𝑋"! +
𝑆
4
3𝑋𝑋"! − 𝑋#

𝑋 → 𝑋	 − ℎ      and     𝑋" → 𝑋" + $
!

𝐻%&$'( = 3𝜋𝛿𝑄 𝑋 − ℎ ! + 𝑋" +
𝑎
2

!
+
𝑆
4
3( 𝑋 − ℎ !) 𝑋" +

𝑎
2

!
− (𝑋 − ℎ)#

=
𝑆
4
[	3ℎ𝑋! + 3ℎ# − 6𝑋ℎ! + 3ℎ𝑋"! + 9ℎ# + 2 3ℎ𝑋" 3ℎ

	 +	3𝑋𝑋" + 9𝑋ℎ! + 6 3𝑋𝑋"ℎ	 − 3ℎ𝑋"! − 9ℎ# − 6 3ℎ!𝑋"
    
                                                       −	𝑋# + 3𝑋!ℎ − 3ℎ!𝑋 + ℎ#]	
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Translated Kobayashi Hamiltonian

𝐻 = 3𝜋𝛿𝑄 𝑋! + 𝑋"! +
𝑆
4
3𝑋𝑋"! − 𝑋#

It is convenient to analyze the transit time when we move on of  the vertices to origin.

𝑋 → 𝑋	 − ℎ      and     𝑋" → 𝑋" + $
!

𝐻%&$'( = 3𝜋𝛿𝑄 𝑋 − ℎ ! + 𝑋" +
𝑎
2

!
+
𝑆
4
3( 𝑋 − ℎ !) 𝑋" +

𝑎
2

!
− (𝑋 − ℎ)#

𝐻)*+#, =
-
.
[	6ℎ𝑋/ + 4ℎ0 + 	3𝑋𝑋(/ + 6 3𝑋𝑋(ℎ	 −	𝑋0]
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Equation of  motion

From the above Hamitonian, we get the 𝑋 evolution equation as:

 12
13
= $%%&'()

$"$
 

 12
13
= 4-

.
	𝑋𝑋( + 3𝑋ℎ	

𝐻%&$'( =
)
*
[	3ℎ𝑋! + 3ℎ# + 	3𝑋𝑋"! + 6 3𝑋𝑋"ℎ	 − 	𝑋# + 3𝑋!ℎ	 + ℎ#]

tn

t1

𝑃!

𝑃"

𝑎

𝑋′

𝑋 𝑃#

Septum

Next is to eliminate 𝑋( and get the X evolution purely in terms of  𝑋.
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Equation of  motion

We can prove that the Hamiltonian is a constant of  motion (one way is to verify using Poisson brackets).  

𝑋* =
𝑋+" + 3𝑋+𝑋+* − 𝑋"

3𝑋

𝐻%&$'( =
)
*
[	3ℎ𝑋! + 3ℎ# + 	3𝑋𝑋"! + 6 3𝑋𝑋"ℎ	 − 	𝑋# + 3𝑋!ℎ	 + ℎ#]

Thus,

,
-
[	3ℎ𝑋" + 3ℎ# + 	3𝑋𝑋*" + 6 3𝑋𝑋*ℎ	 −	𝑋# + 3𝑋"ℎ	 + ℎ#] = ,

-
[	3ℎ𝑋+" + 3ℎ# + 	3𝑋+𝑋+*" + 6 3𝑋+𝑋+*ℎ	 −	𝑋+# + 3𝑋+"ℎ	 + ℎ#]

𝐻 𝑋', 𝑋'( ; 𝑛 = 𝐻 𝑋, 𝑋(; 𝑛 + Δ𝑛
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Equation of  motion

𝑋* =
𝑋+" + 3𝑋+𝑋+* − 𝑋"

3𝑋

Plugging this into the X-evolution equation, we get:

dX
dn =

6𝑆
4 	𝑋𝑋* + 3𝑋ℎ	

dX
dn =

6𝑆
4 	𝑋

𝑋+" + 3𝑋+𝑋+* − 𝑋"

3𝑋
+ 3𝑋ℎ	

dX
dn =

6𝑆
4

𝑋+" + 3𝑋+𝑋+* − 𝑋"

3
+ 3𝑋ℎ	

dX
dn = 𝑓(X) (say)
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dX
dn

= f(X)

dn = 𝑓(𝑋) +,𝑑𝑋

𝑇)) = 5
".

")/0% 𝑆
4

6 3ℎ𝑋 +
6
3
	𝑋'/ + 6	𝑋'𝑋'( 	−

6
3
𝑋/

56
𝑑𝑋

Can be integrated by completing the squares:

5
1

𝑎𝑥/ + 𝑏𝑥 + 𝑐
	𝑑𝑥 =

1
𝑏/ − 4𝑎𝑐

log
2𝑎𝑥 + 𝑏 − 𝑏/ − 4𝑎𝑐
2𝑎𝑥 + 𝑏 + 𝑏/ − 4𝑎𝑐

t1

𝑃!

𝑃"

𝑎

𝑋′

𝑋 𝑃#

Septum

Equation of  motion
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Kobayashi Hamiltonian

𝑇)) = 5
".

")/0% 𝑆
4 6 3ℎ𝑋 +

6
3
	𝑋'/ + 6	𝑋'𝑋'( 	−

6
3
𝑋/

56
𝑑𝑋

𝑇)) =
2
3𝑆

1

9ℎ/ + 4(𝑋'/ + 3𝑋'𝑋'()
log

−2𝑋 + 3ℎ − 9ℎ/ + 4 𝑋'/ + 3𝑋'𝑋'(

−2𝑋 + 3ℎ + 9ℎ/ + 4 𝑋'/ + 3𝑋'𝑋'(
".

")/0%

Septum

t1

𝑃!

𝑃"

𝑎

𝑋′

𝑋 𝑃#

This is the analytical expression for transit time of  particles when the resonance condition 
remains constant throughout the extraction, i.e., the separatrix size does not change. 
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Ideal Quad Ramp

for k = 0 .05% + 𝐺! ∗ 𝑒𝑟𝑟"#$ 
(with 𝐺! = 0.1 → 0.01)

The quad ramp for “ideal spill rate” 
(with error tolerance of  5%) was 
obtained using an adaptive learning 
algorithm and particle tracking.

ν%&'	= ν()*	(1 ± k%) 
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ν%&'	= ν()*	(1 ± k%) 

for k = 0 .05% + 𝐺! ∗ 𝑒𝑟𝑟"#$ 
(with 𝐺! = 0.1 → 0.01)

The quad ramp for “ideal spill rate” 
(with error tolerance of  5%) was 
obtained using an adaptive learning 
algorithm and particle tracking.
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Computing the analytical transit time

𝑇!! =
2
3𝑆

1

9ℎ" + 4(𝑋#" + 3𝑋#𝑋#$ )
log

−2𝑋 + 3ℎ − 9ℎ" + 4 𝑋#" + 3𝑋#𝑋#$

−2𝑋 + 3ℎ + 9ℎ" + 4 𝑋#" + 3𝑋#𝑋#$
%!

%"#$%

Transit Time:

Plugging in sample Mu2e extraction numbers:
 

• 𝑋1234 = (12 − ℎ) mm
• ℎ = "

#
5678
,

• 𝛿𝑄 = 9.650 → 9.666 (acquired from slow 
regulation quad ramp)

• S = 500 T/m^2 
• ℎ9:9 =

;!"!
" #

≈ 2.6	𝑚𝑚
• 𝑎9:9 ≈ 9.2	mm (approximation)
• 𝑋+ and 𝑋′+ chosen from distribution at 

vertex
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Computing the analytical transit time

𝑇!! =
2
3𝑆

1

9ℎ" + 4(𝑋#" + 3𝑋#𝑋#$ )
log

−2𝑋 + 3ℎ − 9ℎ" + 4 𝑋#" + 3𝑋#𝑋#$

−2𝑋 + 3ℎ + 9ℎ" + 4 𝑋#" + 3𝑋#𝑋#$
%!

%"#$%

Transit Time:

Plugging in sample Mu2e extraction numbers:
 

• 𝑋1234 = (12 − ℎ) mm
• ℎ = "

#
5678
,

• 𝛿𝑄 = 9.650 → 9.666 (acquired from slow 
regulation quad ramp)

• S = 500 T/m^2 
• ℎ9:9 =

;!"!
" #

≈ 2.6	𝑚𝑚
• 𝑎9:9 ≈ 9.2	mm (approximation)
• 𝑋+ and 𝑋′+ chosen from distribution at 

vertex

We get the analytical transit time curve to be:
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Particle Tracking to check Transit Time
To verify the transit time expression through simulation, we prepared our initial 
distribution to avoid statistical noises from the beam halo. Particle tracking was 
done using 4 millions particles.

The initial distribution was prepared by running a 
normal distribution of  particles at a constant tune of  
𝜈< = 9.650 for 2000 turns until all the halo is extracted.

Simulation strategy:

• Get the ideal tune ramp curve from Slow 
Regulation simulations.

• Squeeze the tune from ∆𝜈 = 𝜈! → 𝜈" using the 
tune ramp  curve.

• Store at the number of  particles extracted at each 
turn, including the transit time.

• Iterate this for all the 430 time steps until ∆𝜈 goes 
to zero. 

Input sample used for particle 
tracking.
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Simulation result
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Analytical Calculation
Numerical Particle Tracking
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Simulation result
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Dynamic Transit Time

The transit time function derived earlier was for when the resonance condition remains static throughout the 
extraction process, i.e., the stable region’s size does not change while the particles are still in transition.

However, often in reality, the resonant extraction process is a continuous one where 
the stable region is not static but changes dynamically with time. 

This begs the question: how does the transit time change with the 
separatrices are shrinking?

We can start from the evolution equation of  𝑋:

dX
dn =

𝑆
4 6 3ℎ𝑋 +

6
3
	𝑋+" + 6	𝑋+𝑋+* 	−

6
3
𝑋"

Since the particles that will get extracted first are the ones near the vertex 
of  the triangle close to the septum, let us assume 𝑋+ = 0 and 𝑋+* =
3𝑋+.

Plugging in:

dX
dn =

𝑆
4 6 3ℎ −

6
3
𝑋" =

3𝑆
2 3

	(3ℎ𝑋 − 𝑋")

t2

t1

𝑡: =	?

𝑋=

𝑋
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Dynamic Transit Time

Since the tune will be ramped towards resonant tune throughout the spill, the separatrix will be shrinking with the 
same velocity, given by:

ℎ̇ = −
4𝜋
𝑆
𝑑𝑄
𝑑𝑛

Since this velocity is in the opposite direction of  the particle’s direction 
(because the particle is moving away from the separatrix), we add this to 
the 𝑑𝑋/𝑑𝑛 :

dX
dn =

3𝑆
2 3

3ℎ𝑋 − 𝑋" +
4𝜋
𝑆
𝑑𝑄
𝑑𝑛

t2

t1

𝑡: =	?

𝑋=

𝑋

ℎ̇

Now we invert the above equation and integrate to find the transit time T==> =	∫ 𝑑𝑛

𝑇??	AB: = ∫ 𝑑𝑛 = L
CD#E

C
D$%&'
E 1

3𝑆
2 3ℎ𝑋 − 𝑋" + 4𝜋𝑆

𝑑𝑄
𝑑𝑛

	𝑑𝑋
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𝑇77	89# = ∫ 𝑑𝑛 = 5
5".:

5
")/0%
: 1

3𝑆
2 3ℎ𝑋 − 𝑋/ + 4𝜋𝑆

𝑑𝑄
𝑑𝑛

	𝑑𝑋

𝑇44	AB: =
2

6 3𝜋𝛿𝑄
1

9ℎ" + 4(𝑋+" + 3𝑋+𝑋+* )
log

2
3
𝑋1234
ℎ 	− 2

3𝛿𝑄
𝑑𝑄
𝑑𝑛

2
3
𝑋+
ℎ + 2 3	− 1

9𝜋𝛿𝑄"
𝑑𝑄
𝑑𝑛

2
3
𝑋+
ℎ − 2

3𝛿𝑄
𝑑𝑄
𝑑𝑛

2
3
𝑋1234
ℎ + 2 3	− 1

9𝜋𝛿𝑄"
𝑑𝑄
𝑑𝑛

D#

D$%&'

Analytical Expression for Transit Time (Dynamic case)

We can solve this again by completing the squares.
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Plugging in Mu2e extraction numbers:
 

• 𝑋()*+ = (12 − ℎ) mm

• ℎ = ,
-
./01
2

• Nturns = 500
• 𝛿𝑄 = 6𝜋	×	𝜈[𝑖: 𝑖 + 7]	values 

repeated 60 times (because 500/60 ≈
8)

• 𝛿�̇� = 6𝜋	× 𝜈 𝑖 − 𝜈 𝑖 + 1
• ℎ343 = 𝑎343/2 3
• 𝑎343 ≈ 9.2	mm (approximation)

𝑇22	456 =
2

6 3𝜋𝛿𝑄
1

9ℎ7+4(𝑋87+ 3𝑋8𝑋89)
log

2
3
𝑋:;<2
ℎ 	− 2

3𝛿𝑄
𝑑𝑄
𝑑𝑛

2
3
𝑋8
ℎ +2 3	− 1

9𝜋𝛿𝑄7
𝑑𝑄
𝑑𝑛

2
3
𝑋8
ℎ − 2

3𝛿𝑄
𝑑𝑄
𝑑𝑛

2
3
𝑋:;<2
ℎ +2 3	− 1

9𝜋𝛿𝑄7
𝑑𝑄
𝑑𝑛 =&

='()*

Dynamic TT is faster than static TT.

Comparison of  the analytical transit time with simulation

𝑇22 =
2
3𝑆

1

9ℎ7+4(𝑋87+ 3𝑋8𝑋89)
log

−2𝑋+3ℎ− 9ℎ7+4 𝑋87+ 3𝑋8𝑋89

−2𝑋+3ℎ+ 9ℎ7+4 𝑋87+ 3𝑋8𝑋89
=&

='()*



Comparison of  the analytical transit time with 
simulation
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Distribution Preparation

To compare the transit time of  particles in the upper and lower 
band just outside the separatrix, an initial distribution was 
prepared. 

Distribution preparation could be challenging and time consuming 
since we require an infinitesimally thin slice of  particles.

To achieve this, the distribution was prepared by squeezing the 
tune by 0.000128 (equivalent of  about 200 turns worth of  tune 
change). 

This was achieved by assigning particle ID to each particle and 
backtracking the extracted slice. 

# of  extracted particles ~ 600,000
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Particle TT in upper and lower slice

To compare the transit time of  particles in the upper and lower 
band just outside the separatrix, an initial distribution was 
prepared. 

Distribution preparation could be challenging and time consuming 
since we require an infinitesimally thin slice of  particles.

To achieve this, the distribution was prepared by squeezing the 
tune by 0.000128 (equivalent of  about 200 turns worth of  tune 
change). 

This was achieved by assigning particle ID to each particle and 
backtracking the extracted slice. 

# of  extracted particles ~ 600,000
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Particle TT in upper and lower slice
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Particle TT in upper and lower slice

How does the simulation compare to 
analytical expression?
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Prediction = 37 turns
Simulation = 33 turns

Simulation = 33 turns

Prediction = 81 turns
Simulation = 84 turns

Analytical Calculation vs Simulation 
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Prediction = 38 turns
Simulation = 33 turns

Simulation = 33 turns

Prediction = 153 turns
Simulation = 156 turns

Analytical Calculation vs Simulation 
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Analytical Calculation vs Simulation 
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Tune squeeze of 20 turns

Turns

Fr
eq
ue
nc
y

50 60 70 80 90 100

0
50
00

15
00
0

25
00
0Even thinner squeeze à 20 turns!!!

A tune change of  0.0000128 was 
done and 300,000 particles were 
extracted. 



Tune squeeze of 20 turns

Turns
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Prediction = 49 turns
Simulation = 46 turns

Prediction = 210 turns
Simulation = 202 turns

Analytical Calculation vs Simulation 
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Tune squeeze of 20 turns

Turns
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Prediction = 113 turns
Simulation = 106 turns

Prediction = 210 turns
Simulation = 202 turns

Analytical Calculation vs Simulation 
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Distribution Preparation for Delivery Ring Scenario

SS10-60 SS40-50

SS20-30

RFKO 
kickerFor the resonant extraction for Mu2e, we have three dedicated fast 

ramping quadrupoles and six  harmonic sextupoles (set of  three 
sextupoles) in the straight sections. 

To simulate the transit time, the ideal lattice file was used to get 
phase advances between the observation point and the sextupoles.

𝜙>

𝜙7

𝜙?

𝜙6 + 𝜙/ + 𝜙0 = 9.666 − 𝛿𝜈

𝜙/ ≈
𝜋
6

We use the relative strength of  𝑆! and  𝑆" to 
rotate and orient the separatrix efficiently. 
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Distribution Preparation for Delivery Ring Scenario

SS10-60 SS40-50

SS20-30

RFKO 
kickerFor the resonant extraction for Mu2e, we have three dedicated fast 

ramping quadrupoles and six  harmonic sextupoles (set of  three 
sextupoles) in the straight sections. 

To simulate the transit time, the ideal lattice file was used to get 
phase advances between the observation point and the sextupoles.

𝜙>

𝜙7

𝜙?

𝜙6 + 𝜙/ + 𝜙0 = 9.666 − 𝛿𝜈

𝜙/ ≈
𝜋
6

We use the relative strength of  𝑆! and  𝑆" to 
rotate and orient the separatrix efficiently. 
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IN 
PROGRESS
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Future Directions

• Compute the analytical histogram for all the extracted particles and compare 
against the histogram gotten from tracking simulation.

• Derive an expression for a truer Hamiltonian that contains higher orders in 
𝛿𝑄,	derive the equations of  motion, derive the transit time and compare it against 
the Kobayashi Hamiltonian transit time.

• Investigate the effects of  intensity dependent effects on transit time (and how one 
could incorporate space charge in the SX Hamiltonian) and compare with space 
charge tracking numerical simulations.

• Investigate ways of  validating transit time not just through tracking but with the real 
beam.
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THANK YOU


