
== 0mm

STUDIES ON SPILL MICRO STRUCTURES
FOR SIS100 KO EXTRACTION AND TRANSIT
TIMES FOR SIS18 TUNE SWEEP EXTRACTION

Stefan Sorge
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== 0mmPart I: SIS100 KO Extraction

Introduction to Part I on a simulation study on spill quality of SIS100 KO extraction

• SIS100 will be main synchrotron of future FAIR project.

Circumference: C = 1083.6 m.

• Will deliver heavy ion beams to many fixed target experiments.

• Most experiments will require slow extraction.

KO extraction is foreseen as standard slow extraction technique.

• Need for investigation of spill micro structures.

• Aim: Studying influence of some variables on spill quality:

– Horizontal chromaticity.

– Harmonic of the carrier frequency of the KO signal.

– Time resolution of spill recording.
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== 0mmPart I: SIS100 KO Extraction

Some characteristics:

• Typical slow extraction working points near Qx = 17.32, Qy = 17.4.

• Chromaticities ξx, ξy according to definition

∆Q = ξ δ

Natural: ξx = −20.1, ξy = −20.2 changed to ξx = −1 ... − 3, ξy = −26.1.

• Slow extraction energy range E = (0.4, ... , 2.7) GeV/u for reference ion U28+.

This presentation: only lowest energy E = 0.4 GeV/u.

→ Resulting revolution time: trev = 5.05 µs.

• Simulations with MAD-X code.

100000 particles tracked for 150000 revolutions → time interval tex = 0.75 s.

• Spills recorded in time bins trec = 10.1 µs = 2 trev:

→ not much longer than revolution time.

• KO signal: Random Binary Phase Shift Keying (RBPSK) signal.
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Spill micro structures are created by quadrupole ripples and KO signal.

1. Quadrupole ripples:

• Single frequency f = 600 Hz with relative amplitude 10−5.

• Noise signal with band width limited to fbw = 2 kHz and relative rms strength 10−5.

• Choice according to observations in present GSI synchrotron SIS18.

2. KO signal: Random binary phase shift keying (RBPSK) signal

∆x
′
(nrev) = ∆x

′
a sin (2πQcnrev + φKO + φoffset)

• Constant KO amplitude∆x
′
a, set sufficiently large to extract all particles in simulation.

• fc = frev Qc: carrier frequency with “carrier tune” Qc = hKO + 1/3 − ∆Qx/2 and

distance between horizontal machine and resonance tunes ∆Qx ≡ 52/3−Qx.

• φKO: phase randomly shifted between values φKO = 0, π with phase shift rate.

Shifting φKO changes signal’s sign → width fw = frev Qw of the power spectrum.

• φoffset: set of different fixed phase offsets applied to different fractions of particles.
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Phase offsets φoffset

• Simulations with MADX → KO signal is function of revolution.

• In reality, phase of KO signal changes within revolution.

→ Particles with different longitudinal positions receive KO signal of different phases.

0 1 2 3 4 5
revolution

-1

0

1

2

K
O

 s
ig

n
a

l 
/ 

K
O

 a
m

p
lit

u
d

e

real signal
uniform signal to all particles
signal with 10 phase steps per rev.

Simple approximation:

• Split particle ensemble in Nfrac = 10

fractions.

• Apply to each fraction signal modified by

constant phase offset

φoffset = 2π Qc

nfrac − 1

Nfrac

with nfrac = 1, ... , Nfrac.

Effects due to phase slip factor neglected for coasting beam. Can be included with other

code, e.g. XSuite. See presentation of Philipp Niedermayer.
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Power spectrum of RBPSK signal recorded with several resolutions
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Half width defined by first minimum:

|fmin − fcnt| = fw.

• Fractional phase advance per revolution and corresponding central frequency

signal resolution 1 rev.: φrev,cnt/(2π) = 1/3− 0.0137/2 = 0.3265, fcnt = 64.7 kHz

signal resolution 2 rev.: φrev,cnt/(2π) = 0.1735, fcnt = 34.4 kHz

signal resolution 3 rev.: φrev,cnt/(2π) = 0.00685, fcnt = 1.36 kHz

signal resolution 4 rev.: φrev,cnt/(2π) = 0.0765, fcnt = 15.1 kHz

• Half width in all simulations to apply the same signal: Qw = 0.0137, fw = 2.71 kHz

sufficiently large to cover particle tunes and 3rd integer resonance for all chromaticities.
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Influence of chromaticity, weighted duty factor for coasting beam
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Higher spill quality denoted by larger weighted

(or averaged) duty factor for horizontal chro-

maticity with larger modulus.

Weighted (or averaged) duty factor Fduty,weighted =

∫

dt Fduty(t)Ṅ(t)
∫

dt Ṅ(t)
=

∑

k

Fduty(tk)N(tk)

∑

k

N(tk)

with time dependent duty factor Fduty(tk) =
〈N〉2 (tk)
〈N 2〉 (tk)

.

〈x〉: variable x recorded in time intervals trec = 2 trev ≈ 10.1 µs and averaged in averaging

time intervals tave = 1000 trec ≈ 10.1 ms.
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Influence of chromaticity, spill spectra (only coasting beam)
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• Spectral power density p(f ) for different

chromaticities similar.

• Difference better visible in integrated spec-

tral power

P (f ) =

f
∫

0

df̄ p(f̄ )

• Chromaticity affects spill structure at low

frequencies f ≤ 2 kHz.

→ range of quadrupole ripple.
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Influence of harmonic number of KO signal hKO. Apply ξx = −3.
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• Applying hKO > 0:

– Increase of weighted duty factor.

– Several structures on spectral power density at high frequencies disappear, in partic-

ular, peak near KO signal’s central peak at f = 34.4 kHz.

Hypothesis: Binning provides average over KO signal values. The KO signal range in

recording bin is increased for hKO > 0.

• Tiny difference between hKO = 1 and hKO = 2 → Possibly, need for more φoffset.
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Influence of recording time bin trec. Apply ξx = −3 and hKO = 0.

So far, recording bin lengths trec = (2, 3, 4) revolutions, where
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• particle number kept constant.

• extraction time interval increased by factors 1.5

and 2 by reducing KO amplitude ∆x
′
a by factors

1/
√
1.5 and 1/

√
2, using relation

dǫx
dt

∝ ∆x
′ 2
a

⇓
Averaged number of particles in trec, tave, and Poisson duty factor kept.

Hypothesis: Increase of weighted duty factor because

1. Longer trec yields average over longer KO signal range which mitigates spill structures

from KO signal.

2. 3 Qc ≈ integer, hence approximately average over full KO oscillations in trec = 3 trev.
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== 0mmPart II: Transit Times SIS18 Tune Sweep Extraction

Motivation of Part II on the determination of transit times for SIS18 tune sweep extraction

• Work on transit times started at GSI 2017: Spread of the transit times was found to

mitigate spill micro structures. High frequency spill structures more mitigated [1].

• Application developed for present GSI heavy ion synchrotron SIS18 [2]:

Superposing low frequency tune ripple with high frequency tune modulation mitigates

low frequency spill ripple. → “Tune wobble”

• Recent emergence of desire to measure transit times. Actual status:

pre-studies with simulations and measurements done, where data evaluation still in

progress.

This presentation:

• Simulation study to introduce topic.

• Measurement details shown on poster of Jiangyan Yang.
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Determination of transit times with simulations with tune sweep in steps

• SIS18 with circumference C = 216.72 m.

• Conditions of Ar18+ beam at E = 500 MeV/u → Revolution time trev = 0.95 µs.

• Simulation with simplified model which consists of rotation matrix and virtual sextupole.
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• Horizontal tune sweep:

Qx,i = 4.327, Qx,f = 4.3362.

• Height of tune step: ∆Qx = 0.0008.

• 115 steps of duration of 20000 revolutions.

Idea:

Tune step provides that many particles leave stable phase space area at the defined instant.

Instant of step is start of the transit which is usually unknown.
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Ideal world: Simulation without quadrupole ripples.
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• Spill is sequence of peaks shown in the right picture.

• Peaks are well separated. Hence, average and rms width of transit times can be deter-

mined.
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Ideal: Simulation without quadrupole ripples.

Time dependent average and rms

spread of transit times

• Monotonic increase of Ttr,av,∆Ttr,rms during the extraction because of increased number

of particles which extracted near resonance towards spill end.

• Sign for increasing spill quality because larger average and spread of transit times results

in lower spill micro structure level.

• Agreement with former observation of increasing spill quality towards the end of the spill.
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More realistic model: Simulation with quadrupole ripples
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• Spill is sequence of peaks. Many particles extracted between peaks due to tune ripples.

→ Time span between particle arrival at detector and tune step not transit time anymore.

• Instead, average and rms spread of transit times determined by tune step duration of

20000 revolutions → larger than without quadrupole ripples and less time dependent.

Need for other way to determine average and spread of transit times.
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Tune sweep with steps applied in measurement, U73+ beam at E = 300 MeV/u

• Applied step heights: ∆Qx = 5 · 10−5, 10−4, 2 · 10−4, 5 · 10−4, 10−3.

• Steps have finite rise time ∆t = 1000 rev ≈ 1 ms → further obstacle because requires

distinction between similar contributions to peak duration of transit times and rise time.

• Rise time and tune ripple are points of data evaluation under discussion,

see Poster of Jiangyan Yang.
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Summary and conclusions

• The influence of some parameters to the spill quality of SIS100 KO extraction is inves-

tigated in particle tracking simulations done with MADX:

horizontal chromaticity, harmonic number of the carrier tune of the KO signal, length of

the recording bins.

• The last two are assumed to have an influence because the spills are recorded in bins

which are not much longer than a revolution time.

• An increase of the spill quality is found by increasing each of the three parameters.

• Generally, duty factor is low.

• Possibly, inclusion of effects due to phase slip factor to additional spill smoothing, e.g. by

particle to neighbouring recording time bins or change of KO phase due to longitudinal

motion.
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Summary

• An attempt to determine transit times for tune sweep slow extraction from SIS18 with

particle tracking simulations using a simplified model is introduced. This study was a

pre-study to measurements.

• The model consists of application of a tune sweep in sudden steps. Hence, the transit of

the particles towards the extraction channel starts at a defined instant which is usually

not known.

• The model seems to work well under ideal conditions, i.e. for sudden tune steps without

tune ripples.

• The handling of tune steps with finite rise time and the presence of tune ripples is still

under discussion.
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