

Current Status of Slow Extraction at J-PARC Main Ring

Ryotaro Muto J-PARC/KEK

2024-Feb Slow Extraction Workshop 2024

J-PARC

Japan Proton Accelerator Research Complex

1567.5 m

(22.333, 20.78)

30 GeV

5.2 sec

~2 sec

photo

Hadron Hall and Its Extension Project

Hadron Experimental Facility extension (HEF-ex) Project

→ Feb. 13 (Tue) A. Toyada, "Position and beam size measurements for unbunched beams in transfer lines"

Slow Extraction at J-PARC MR

- 3rd-order Resonant
 Slow Extraction
- Horizontal betatron tune is ramped by Q mags in arcs
- Designed Step Size: 20 mm
- Septum thickness: 60 um
- Dispersion
 - in Straight Section: ~0
- Chromaticity: ~0
- Dynamic Bump Scheme
 - → High Extraction Eff. ~99.5%

Slow Extraction at J-PARC MR

Slow Extraction Beam Power Trend

Achieve 99.5% Extraction Efficiency

Slow Extraction before MR Upgrade

J-PARC MR Upgrade

Main purpose: shorten acceleration time to increase the repetition rate

Upgrades of Main Magnet Power Supplies, RF cavities, and Injection and Fast Extraction Devices

ACC time : 1.4 s \rightarrow 0.65 s

FX repetition: 2.48 s \rightarrow 1.36 s

SX repetition: 5.20 s → 4.24 s with the same flattop length of 2.61 s Beam power with the same particle number will increase by a factor of 1.23

J-PARC MR Upgrade

Main purpose: shorten acceleration time to increase the repetition rate

Upgrades of Main Magnet Power Supplies, RF cavities, and Injection and Fast Extraction Devices

ACC time : 1.4 s \rightarrow 0.65 s

FX repetition: 2.48 s \rightarrow 1.36 s

SX repetition: 5.20 s → 4.24 s with the same flattop length of 2.61 s Beam power with the same particle number will increase by a factor of 1.23

Beam operation after the MR upgrade

Slow Extraction after MR Upgrade

2023-Jun

Beam loss distribution in SX straight section

The extraction efficiency of 99.5% before the main power supply upgrade was well reproduced.

Next Step

Next March:

 Beam acceleration and debunch test with shortened repetition time of 4.24 s (without slow extraction)

Next April – May:

- Slow extraction tuning with 4.24 s repetition time aiming at beam power increase
- User operation

Major Challenges in J-PARC Slow Extraction

Beam Power Upgrade

- Beam Loss Reduction
 - Diffusers → Feb. 13 (Tue) "Beam diffusers for beam loss reduction"
 - Bent Silicon Crystal
- Mitigation of Beam Instability at Debunch Timing
 - RF Manipulation at Inj. and Flattop
 - Large Slippage Optics
 - VHF cavity

Spill Structure Improvement

→ Feb. 12 (Mon) "Spill structure with newly upgraded main magnet power supplies in J-PARC Main Ring"

Machine Protection System

→ Feb. 13 (Tue) M. Tomizawa, "Machine protection measures for malfunctions of accelerator devices in J-PARC Main Ring"

Beam Instability at Debunch Timing

RUN78 (Feb-2018) 63 kW

Ext. Efficiency 99.472% with phase offset of 50°

RUN79 (Jun-2018) 63 kW **Ext. Efficiency 98.666%** with phase offset of 60°

Beam losses were observed in the whole ring at debunch timing

Beam Instability at Debunch Timing

Transverse Beam Size Growth

Beam instability occurs ~60ms after RF OFF

Suppression of beam instability during debunching

In the beam test after MR upgrade, we were able to suppress the instability up to 70.8 kW (7.6 e+13 protons/pulse with 5.2 s repetition).

We will further optimize RF manipulation based on simulation and beam study.

-0.02-0.015-0.01-0.005 0 0.005 0.01 0.015 0.0

dp/p

200

-0.02-0.015-0.01-0.005 0 0.005 0.01 0.015 0.00

dp/p

Large Slippage Optics

Reported in

ATAC2021

MR Lattice: imaginary $\gamma_t \rightarrow$ flexible momentum compaction

Optics with a larger slippage $|\eta|$ is a promising candidate for suppressing the instability at a higher beam power

The slippage is changed during acceleration

VHF Cavity for Longitudinal Emittance Growth

Slow Extraction Beam for COMET

8 GeV operation for COMET

- Beam energy : 8 GeV
 ~1 MHz pulsed beam
- \cdot < 10⁻¹⁰ proton beam extinction \rightarrow slow extracted bunched beam

Operation for COMET phase- α

Phase	Power [kW]	Cycle [s]	#Proton [TP/pulse]	#Proton [TP/bunch]	Acc. Status
α	0.22	9.2	1.6	0.4	Done
I	3.2	2.48	6.2	1.6	Ready
П	56	1.2	52.5	13.1	

Acceleration up to 8 GeV and slow extraction operation were successfully performed with the requested beam intensity (~0.2 kW)

Repetition: 9.6 s