Accessing Generalized Distribution Amplitude with the channel $p \bar{p} \rightarrow \pi^0 \gamma$ and investigation of the background channel $p \bar{p} \rightarrow \pi^0 \pi^0$

Faiza Khalid

Justus Liebig University Giessen

Introduction

$$p\overline{p} \rightarrow \gamma M$$

at large Mandelstam variables

process amplitudes factorizes:

Cross-sections from E760 Data

- T. A. Armstrong*, Two-body neutral final states produced in antiprotonproton annihilations at 2.911 $\leq \sqrt{s} \leq$ 3.686 GeV
- Integrated the angular range for a fixed \sqrt{s} to get the partially integrated cross section in the cos(θ) range which is available for all energies.

\sqrt{S}	$\pi^0\pi^0$	$\pi^0\pi^0$
	$\pi^0\gamma$	γγ
2.6	226	1962
3.36	65.6	1502
4.5	385.9	27672
5.5	2484.8	361374

Background Suppression for $p\overline{p} \rightarrow \pi^0 \gamma$: Signal to Background Ratio at 5 GeV/c

Cuts applied:

- Calorimeter clusters each with threshold > X GeV
- Exactly one pion is detected in an event
- 4C kinematic fit is applied and events with confidence level less than 10% are rejected.

*signal to background ratio already contains the different cross sections.

Signal to background ratio at different beam momenta

$$N_{\pi^0} = 1 + E_{\gamma} > X + OA$$

plot assumes equal crosssections to see the rejection power of the applied cuts.

Signal to background ratio at different beam momenta $N_{\pi^0} = 1 + E_{\gamma} > X + 0A$

Signal to background ratio at various beam momenta

Signal to background ratio

Signal to background ratio at different beam momenta. Black markers show ratio of acceptances with the ratio of cross-sections from 5GeV. Magenta markers correspond to ratio of cross-sections at their corresponding energies.

Feasibility Study for the channel $p \bar{p} \rightarrow \pi^0 \pi^0$: Count Rate Estimate at 5 GeV/c

Can measure this channel very well

Feasibility Study for the channel $p \bar{p} \rightarrow \pi^0 \pi^0$: Missing Energy Plot at 5 GeV/c for Various Cuts

Missing Energy Plot at 2.5 GeV/c and 10 GeV/c for Various Cuts

Signal to background ratio of reconstructed events

signal $p \bar{p} \rightarrow \pi^0 \pi^0$ background $p \bar{p} \rightarrow \pi^0 \pi^0 \gamma$

 \land 5 GeV/c

▲ 10 *GeV*/*c*

Signal to background ratio of reconstructed events

▲ 2.5 *GeV*/*c*

signal $p \bar{p} \rightarrow \pi^0 \pi^0$ background $p \bar{p} \rightarrow \pi^0 \pi^0 \pi^0$

Determining Count Rate Estimate and Error

- > No. of counts of signal, N_{sig}
- > No. of counts of background, N_{bkg}
- Count rate = Diff. Cross section * Acceptance * Bin Size * Integrated Luminosity * Counts
- $\blacktriangleright \text{ Acceptance} = \frac{N^{\text{rec}}}{N^{\text{gen}}}$
- \succ CR_{Measured} = CR_{sig} + CR_{bkg}
- ➢ Pure signal, $CR_{sig pure} = CR_{measured} CR_{bkg}$

$$\succ \text{ Error of Signal, } \Delta CR_{sig} = \sqrt{\Delta CR_{measured}^2 + \Delta CR_{bkg}^2}$$

 $\succ \Delta CR_{measured} = \sqrt{CR_{measured}}$ and $\Delta CR_{bkg} = \sqrt{CR_{bkg}}$

Count rate estimate at 2.5 GeV/c

- Propagated error after BG subtraction (in red) is less than the errors obtained from measurement
- BG subtraction can be nicely performed and obtain much better results than measurements

Expected Cross-section with Statistical Uncertainties at 2.5 GeV/c

background $p\overline{p} \rightarrow \pi^0 \pi^0$

Expected Cross-section with Statistical Uncertainties at 5 GeV/c

Error * 1

Count rate estimate at 10 GeV/c

signal $p \bar{p} \rightarrow \pi^0 \gamma$ background $p \bar{p} \rightarrow \pi^0 \pi^0$

 $L = 2 \text{ fb}^{-1}$

 $CS_{sig_propagated}$

Expected Cross-section with Statistical Uncertainties at 10GeV/c

Error gets large, but still we can measure the cross-section nicely

Summary

- The $cos(\theta)$ dependence of the cross-section has been implemented and a reconstruction study has been performed at $\sqrt{s} = 2.6 \ GeV$, $\sqrt{s} = 3.4 \ GeV$ and $\sqrt{s} = 4.5 \ GeV$
- Count rate estimates and estimates of the expected statistical uncertainty was performed.
- Signal to background ratio was determined.
- Different selection cuts were investigated to optimize the signal to background ratio while keeping a reasonable reconstruction efficiency.
- The channel $p\bar{p} \rightarrow \pi^0 \gamma$ can be well measured with $\overline{P}ANDA$ but background has to be considered as it was done in the E760 experiment.
- A feasibility study for $\pi^0 \pi^0$ was done in order to subtract background in other channels and improve signal to background ratio

Outlook:

- For the feasibility study for $p\overline{p} \rightarrow \pi^0 \pi^0$:
 - Determine the signal to background ratio of reconstructed events for the background $p\overline{p} \to \pi^0 \pi^0 \pi^0$
 - Perform the feasibility study with higher statistics.
- Continuation of feasibility studies of all channels at 15 GeV/c beam momentum
- Prepare release note and do thesis write-up.
- For consistency, prepare plots with data simulated on cluster with the newest PANDAroot version.

Thank You For Your Attention!

