Feasibility Study of Zc(3900) and Zcs(3985) in $\bar{p}p$ with the PANDA Detector

Ali YILMAZ & Haluk DENİZLİ

PANDA Collaboration Meeting 23/1

Intro

• The charmonium like state Zc[±](3900) was observed by the BESIII [1] and Belle [2] collaborations in the $\pi \pm J/\psi$ invariant mass spectrum of e+e- $\rightarrow \pi^+\pi^-$ at $\sqrt{s}=4.26$ GeV in 2013 and then confirmed by CLEO-c collaboration in the same process at s $\sqrt{s}=4.17$ GeV [3], which makes Zc(3900) the first confirmed charged charmonium like state.

- [1] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 110, 252001 (2013).
- [2] Z. Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110, 252002 (2013); 111, 019901(E) (2013).
- [3] T. Xiao, S. Dobbs, A. Tomaradze, and K. K. Seth, Phys. Lett. B 727, 366 (2013).

- The Zcs(3985)– was observed in π–J/ψ invariant mass distribution in the study of e+e- → π+π–J/ψ at BESIII and Belle experiments [M. Ablikim et al., C. Z. Yuan et al.].
- [1] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett.
 126, 102001 (2021)

Outline

- Zc(3900) & Zcs(3985)
 - Event Generation
 - Reconstruction & Analysis
 - Background
- Summary

boration Meeting 23/1

Event Generation

- 2 million events at each
- $P_{\bar{p}} = 8.5454$ GeV/c (at resonance of $\psi_{(4260)}$)
- assuming the branching ratio of 100% for $Zc(3900) \rightarrow \pi + J/\psi$
- Mass of $Zc(3900)^{\pm}$: $m_{Zc(3900)} = 3887.2 \pm 2.3$ [Mev/c²]
- p $Zc(3900)^{-}$ @ $\sqrt{s} = 4230 MeV (PDG)_{\pi^{+}}$ @ $\sqrt{s} = 4230 MeV (PDG)_{\pi^{+}}$

 $@\sqrt{s} = 4230 MeV$

• Width: $\Gamma_{Zc(3900)} = 28.2 \pm 2.6 \, [Mev/c^2]$

Zc(3900

Zc(3900)

Zc(3900)

- 1.99 million events at each
- $P_{\bar{p}} = 15$ GeV/c (at max of PANDA)
- assuming the branching ratio of 100% for $Zcs(3985) \rightarrow K + J/\psi$
- Mass of $Zcs(3985)^{\pm}$: $m_{Zcs(3985)} = 3982.5 \pm 2.3 \text{ [Mev/c^2]}$
- Width: $\Gamma = 12.8 \pm 3.0$ [Mev/c²]

e

Reconstruction **Production and Reco:**

- Simulation of transport through the detector
 - Production & Reco: Using FairSoft jun19p2 / FairRoot v18.2.1 / PandaRoot dev:
 - Analysis: Using FairSoft apr22 / FairRoot v18.6.8 / PandaRoot dev
- Transport and reconstruction of particles is done with the PandaRoot framework
- Follow the decay tree
- Best PID algorithm is used (MuonBestPlus for $\mu^+,...$)

Analysis **Reconst. Final States efficiencies**

Used decay pattern recognition and "best" particle identification (PID)

Zc

Reconstructed FS: μ^- , μ^+ , π^- , π^+ \bullet

Particle type	ε[%]
μ^+	95.47
μ-	94.19
π^+	83.46
π^{-}	79.07
$\bar{p}p \rightarrow Zc(3900)^{+}\pi^{-}, (Zc(3900)^{+} \rightarrow$	$J/\psi \pi^+, (J/\psi \rightarrow \mu^+ \mu^-))$
Particle type	د[%]

Particle type	$\varepsilon[\%]$
μ^+	96.61
µ⁻	94.11
π^+	78.77
π^{-}	83.39
$\bar{p}p \rightarrow Zc(3900)^{-}\pi^{+}, (Zc(3900)^{-}\pi^{+}))$	$(J)^- \to J/\psi \pi^-, (J/\psi \to \mu^+ \mu^-))$

Particle type	ε[%]
e +	89.48
e-	85.41
π^+	83.34
π^{-}	78.89
$\bar{n}n \rightarrow 7c(3000)^{+}\pi^{-}(7c(3000)^{+})^{-}$	$000)^+$ $1/w \pi^+ (1/w)$

Particle type	ε[%]
e +	89.64
e-	85.32
π^+	78.57
π^{-}	83.2
$\bar{p}p \rightarrow Zc(3900)^{-}\pi^{+}, (Zc(3900)^{-}\pi^{+}))$	$(000)^- \rightarrow J/\psi \pi^-, (J/\psi \rightarrow e^+e^-))$

• Reconstructed FS: μ^+, μ^-, K^+, K^-

Zcs

Particle type	ε[%]	Particle type	ε[%]
μ^+	99.84	e +	90.8
μ-	94.12	e⁻	82.36
K +	77.2	<i>K</i> +	76.95
<i>K</i> -	79.39	<u>K</u> -	79.16
$\bar{n}n \rightarrow V^{-} 7 (2005)^{+} (7 (2005)^{-})^{-})^{-} (7 (2005)^{-})^{-$	$V^+ \times V^+ I/W (I/W \times U^+ U^-))$	$\bar{n}n \rightarrow K^{-} 7 (3085)^{+} (7 (3085)^{+})^{+} (7 $	$(5)^+ \rightarrow K^+ I/\mu $ ($I/\mu $

Particle type	ε[%]	Particle type	ε[%]
μ^+	94.91	e+	82.74
μ-	94.15	e-	82.43
<i>K</i> +	80.86	<i>K</i> +	80.78
<i>K</i> -	75.61	<i>K</i> -	75.4
$\bar{p}p \to K^+ Z_{cs}(3985)^-, (Z_{cs}(3985)^-)$	$)^- \to K^- J/\psi), (J/\psi \to \mu^+ \mu^-))$	$\bar{p}p \to K^+ Z_{cs}(3985)^-, (Z_{cs}(3985)^-)$	$)^{-} \rightarrow K^{-}J/\psi), (J/\psi \rightarrow$

Analysis **Reconstruction of FS: u+**

pt vs pz

Pvs O

dP vs p

dP/p vs p

PANDA Collaboration Meeting 23/1

Analysis Reconstruction of FS: u+

Pvs O

PANDA Collaboration Meeting 23/1

dP vs p

March 6-10, 2023

14

600

500

Analysis Momentum Resolutions

Reconstructed FS: μ^+ , μ^- , π^+ , π^-

Particle type	dp/p [%]
μ^+	1.158
μ^{-}	1.154
π^+	1.138
π^{-}	1.136
$\bar{p}p \rightarrow Zc(3900)^+\pi^-, (Zc(3900)^+\pi^-))$	$0)^+ \to J/\psi \pi^+, (J/\psi \to \mu^+ \mu^-))$

Particle type	<i>dp/p</i> [%]
e+	1.426
e-	1.403
π +	1.146
π -	1.134
$\bar{p}p \rightarrow Zc(3900)^+\pi^-, (Zc(3$	$900)^+ \rightarrow J/\psi \pi^+, (J/\psi \rightarrow e^-)$

Zc

Particle type	dp/p [%]
μ +	1.167
μ-	1.155
π +	1.123
π-	1.152
$\bar{p}p \rightarrow Zc(3900)^{-}\pi^{+}, (Zc(3900)^{-})^{-}\pi^{+}, (Zc(3900)^{-})^{-}$	$\rightarrow J/\psi \pi^-, (J/\psi \rightarrow \mu^+ \mu^-))$

Particle type	dp/p [%]
e+	1.447
e-	1.435
π +	1.121
π-	1.151
$\bar{p}p \rightarrow Zc(3900)^{-}\pi^{+}, (Zc(3900)^{-}\pi^{+})$	$(0)^- \rightarrow J/\psi \pi^-, (J/\psi \rightarrow e^+ e^-))$

 e^{-})

Zcs

Reconstructed FS: μ^+ , μ^- , K^+ , K^-

Particle type	dp/p [%]
μ^+	0.8109
μ-	0.8095
<i>K</i> +	0.7916
<i>K</i> -	0.8464
$\bar{p}p \to K^- Z_{cs}(3985)^+, (Z_{cs}(3985)^+)$	$(5)^+ \to K^+ J/\psi), (J/\psi \to \mu^+ \mu^-)$

Particle type	dp/p
e+	0.600
e⁻	0.482
<i>K</i> +	0.419
<i>K</i> -	0.362
$\bar{p}p \to K^- Z_{cs}(3985)^+, (Z_{cs}(3985)^+)$	$5)^+ \to K^+ J/\psi),$

Particle type	dp/p [%]	Particle type	dp/p
μ^+	0.8257	e+	1.209
μ-	0.7994	e-	1.223
<i>K</i> +	0.8447	K+	0.842
<i>K</i> -	0.783	<u>K</u> -	0.785
$\bar{p}p \to K^+ Z_{cs}(3985)^-, (Z_{cs}(3985)^-)$	$5)^{-} \to K^{-}J/\psi), (J/\psi \to \mu^{+}\mu^{-}))$	$\bar{p}p \to K^+ Z_{cs}(3985)^-, (Z_{cs}(3985)^-)$	$(5)^- \to K^- J/\psi)$

Reconstruction of Resonance State : J/ψ

- $(3.0969 \pm 0.5) \text{ GeV/c}^2$
- Perform RhoDecayTreeFitter fit
- Select candidate with DecayTree fit prob > 0.01

• Invariant mass cut on $\mu^+\mu^-$ (e^+e^-) to select J/ψ cands $m_{J/\psi}$:

Resonance States: J/ψ

Reconstructed: efficiency

		Zc	
Particle type	ε[%]	Particle type	ε[%]
J/Ψ	67.29	J/Ψ	30.44
$\bar{p}p \rightarrow Zc(3900)^+\pi^-, (Zc($	$3900)^+ \to J/\psi \pi^+, (J/\psi \to \mu^+\mu^-))$	$\bar{p}p \rightarrow Zc(3900)^{+}\pi^{-}, (Zc(3900)^{+}\pi^{-})$	$(D)^+ \to J/\psi \pi^+, (J/\psi)$
Particle type	ε[%]	Particle type	ε[%]
J /Ψ	67.26	J/Ψ	30.47
$\bar{p}p \rightarrow Zc(3900)^{-}\pi^{+}, (Zc($	$3900)^- \to J/\psi \pi^-, (J/\psi \to \mu^+ \mu^-))$	$\bar{p}p \to Zc(3900)^{-}\pi^{+}, (Zc(3900)^{-}\pi^{+})$	$(D)^- \to J/\psi \pi^-, (J/\psi)$

 $\rightarrow e^+e^-))$

 $\rightarrow e^+e^-))$

Resonance States: J/ψ

• Reconstructed: m, chi2, prob

Analysis **Resonance States: Momentum Distributions**

• Reconstructed: J/ψ

Zc

0

Resonance States: Momentum Distributions

• Reconstructed: J/ψ

PANDA Collaboration Meeting 23/1

Reconst. Resonance States: J/ψ

Reconstructed: Momentum Resolution

Particle type	dp/p[%]	Particle type	dp/p[%]
J/Ψ	1.032	J/Ψ	1.336
$\bar{p}p \rightarrow Zc(3900)^+ \pi^-, (Zc(3900)^+)^+ \pi^-)$	$3900)^+ \to J/\psi \pi^+, (J/\psi \to \mu^+\mu^-))$	$\bar{p}p \rightarrow Zc(3900)^{+}\pi^{-}, (Zc(3900)^{+}\pi^{-})$	$)^+ \to J/\psi \pi^+, (J/\psi \to e)$
Particle type	dp/p[%]	Particle type	dp/p[%]
J/Ψ	1.028	J/Ψ	1.365
$\bar{p}p \to Zc(3900)^{-}\pi^{+}, (Zc(3900)^{-}\pi^{+})$	$3900)^{-} \rightarrow J/\psi \pi^{-}, (J/\psi \rightarrow \mu^{+}\mu^{-}))$	$\bar{p}p \rightarrow Zc(3900)^{-}\pi^{+}, (Zc(3900)^{-}\pi^{+})$	$)^- \rightarrow J/\psi \pi^-, (J/\psi \rightarrow e)$

Zc

boration Meeting 23/1

Reconst. Resonance States: J/ψ

• Reconstructed: m, mDiff

Zc

 $M_{J/w^{evt.pdl}}$: 3.09690 GeV/c²

VoigtFit:: quadratic Background + relativistic BW

Analysis **Reconst. Resonance States:**

Zc

- Mass cut with window $m_{Zc(3900)}$: [3.8872 ± 0.5] GeV/c^2
 - •

• Combine J/ψ and π

• Mass cut with window $m_{Zcs(3985)}$: [3.9825 ± 0.5] GeV/c²

Perform RhoDecayTreeFitter fit

Select candidate with DecayTree fit prob > 0.01

Reconst. Resonance States

Reconstructed: efficiency

Particle type	ε [%]	Particle type	ε [%]
<i>Zc</i> (3900)	45.87	Zc(3900)	19.98
$\bar{p}p \rightarrow Zc(3900)^+ \pi^-, (Zc(3900)^+ \cdot$	$\rightarrow J/\psi \pi^+, (J/\psi \rightarrow \mu^+ \mu^-))$	$\bar{p}p \rightarrow Zc(3900)^+ \pi^-, (Zc(3900)^-)^-$	$^{+} \rightarrow J/\psi \pi^{+}, (J/\psi \rightarrow Q)$
Particle type	ε [%]	Particle type	ε [%]
<i>Zc</i> (3900)	45.94	Zc(3900)	20.02
$\bar{p}p \rightarrow Zc(3900)^{-}\pi^{+}, (Zc(3900)^{-} +$	$\rightarrow J/\psi \pi^-, (J/\psi \rightarrow \mu^+ \mu^-))$	$\bar{p}p \rightarrow Zc(3900)^{-}\pi^{+}, (Zc(3900)^{-}\pi^{+})$	$J/\psi \pi^-, (J/\psi \to d)$

 $re^{-}))$

 $e^+e^-))$

	Z	CS	
Particle type	ε[%]	Particle type	ε[%]
Zcs(3985)	45.44	Zcs(3985)	18.31
$\bar{p}p \to K^- Z_{cs}(3985)^+, (Z_{cs}(3985)^+)$	$(5)^+ \to K^+ J/\psi), (J/\psi \to \mu^+ \mu^-))$	$\bar{p}p \to K^- Z_{cs}(3985)^+, (Z_{cs}(3985)^+)$	$(5)^+ \to K^+ J/\psi), (J/\psi)$
Particle type	ɛ[%]	Particle type	ε[%]
Zcs(3985)	44.31	Zcs(3985)	17.8
$\bar{p}p \to K^+ Z_{cs}(3985)^-, (Z_{cs}(3985)^-)$	$(5)^- \to K^- J/\psi), (J/\psi \to \mu^+ \mu^-))$	$\bar{p}p \to K^+ Z_{cs}(3985)^-, (Z_{cs}(3985)^-)$	$(5)^- \to K^- J/\psi), (J/\psi)$

boration Meeting 23/1

Analysis **Reconst. Resonance States**

• Reconstructed: momentum distributions

Reconst. Resonance States

Reconstructed: momentum distributions

boration Meeting 23/1

Reconst. Resonance States:

Reconstructed: momentum resolutions ightarrow

Analysis **Reconst. Resonance States**

Analysis Background

- 30 million events were generated with Dual Parton Model (DPM)
- Same analysis strategy applied to background events
 - no event out of 30 million survived after the applied cuts.
 - (means reco eff, $\epsilon_{bkg} = 2.3 \cdot 10^{-8}$)

branching ratio $Br_{sig} = Br_{J/\psi} = 5.961$ for the J/psi decay in the decay tree is taken into account.

Signal-to-Background ratio is defined as

$$\frac{S}{B} = \frac{\sigma_{sig} \cdot \epsilon_{sig} \cdot Br_{sig}}{\sigma_{bkg} \cdot \epsilon_{bkg}}$$

Signal significance is defined as

 $S_{sig} = \frac{N_{sig}}{\sqrt{N_{sig} \cdot + N_{bkg} \cdot F_{bkg}}}$

• The non-observation of any background events corresponds to a 90% confidence upper limit of 2.3 events.

• The branching ratio of J/psi is set to 100% during event generation. To correct this value for the following calculations, the Scaling factor is $F_{bkg} = \frac{1}{N_{bkg}^{gen} \cdot \sigma_{sig}} \cdot Br_{sig}$

[1] M. Ablikim et al. (BESIII Collaboration). Phys. Rev. Lett. 119, 072001 (2017) [2] https://pdg.lbl.gov/2022/hadronic-xsections/

[3] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 126, 102001 (2021)

Summary

Particle type	Ereco [%]	S / B x10 ⁻⁴	S _{sig}
Zc(3900)+ (from μ+μ-)	45.87	5.8	10.7391*
Zc(3900)+ (from e+ e-)	19.98	2.5	3.6877*
<i>Zc</i> (3900)- (from μ+μ-)	45.94	5.8	10.7035*
<i>Zc</i> (3900)⁻ (from e+ e⁻)	20.02	2.5	3.6905*
* assuming at least 1 background event			

Particle type	_Є reco [%]	S / B	S _{sig}
Zcs(3985)+ (from μ+μ-)	45.44	0.00013	5.4617*
Zcs(3985)+ (from e+ e-)	18.31	5.23x10 ⁻⁵	1.6705*
<i>Zcs</i> (3985)- (from μ+μ-)	44.31	0.00013	5.4446*
Zcs(3985)⁻ (from e+ e-)	17.88	5.11x10 ⁻⁵	1.6705*
* assuming at least 1 background eve			

boration Meeting 23/1

Feature Works

- Increase DPM background statistics
- Generate events for Zc background study
 - $\bar{p}p \to \pi^+ + \pi^- + \mu^+ + \mu^-$,
 - $\bar{p}p \to \pi^+ + \pi^- + e^+ + e^-$

- Increase DPM background statistics
- Generate events for Zcs background study
 - $\bar{p}p \to K^+ + K^- + \mu^+ + \mu^-$,
 - $\bar{p}p \to K^+ + K^- + e^+ + e^-$

Analysis **Reconstruction of FS: transverse vs. longitudinal Momentum Distributions**

 μ^{-}

U⁺

PANDA Collaboration Meeting 23/1

Analysis Reconstruction of FS: total momentum vs. Θ angle Distributions

 μ^+

μ-

 π^+

 π^{-}

PANDA Collaboration Meeting 23/1

Analysis Reconstruction of FS: Momentum Resolution

Backups Electron channel : e⁻

DA Colla

poration Meet

Backups Electron channel : e⁻

March 6-10, 2023

boration Meeting 23/1

Backups Electron channel : e+

DA Colla

March 6-10, 2023

boration Meet

Backups

Electron channel : e+

PANDA Collaboration Meeting 23/1

Backups

Electron channel : J/ψ

0.2

0

0

2

4

40

20

0

8 10 pz [GeV/c] / 0.1

6

 J/ψ from Zc(3900)⁺ full MC sample

March 6-10, 2023

boration Meet

Backups

Electron channel : J/ψ

350

