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Deuteron  stripping: ( , ) , ( , )d p d n

52 years !
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Different aspects to discuss. 
Theoretical calculations   
 Phenomenological  SFs  (from experiment)  

1. Theory:  fundamental problem- SF is not observable.  
Exact many-body approach:   

NNV -not observable.  Different  short-range unitary  
transformations -  short-range repulsive core. 
Infinite number of phase-equivalent potentials 
 S. K. Bogner, R. J. Furnstahl, and A. Schwenk, Prog. Part. Nucl. 

Phys. 65, 94 (2010). 
R. J. Furnstahl and A. Schwenk, J. Phys. G 37, 064005 (2010). 
H. Feldmeier et al., Nucl. Phys. A 632, 61 (1998). 
UCOM – unitary correlation operator method 

iGU e=
UΨ = Ψ

  | | | |H H< Ψ Ψ > = < Ψ Ψ >
At distances large than correlation range  Ψ = Ψ
The scattering amplitude – the amplitude of the outgoing scattered  
wave  is invariant; unitary related potentials are phase-equivalent 
 



The most general model-independent definition of the SF  for 
                     is the square of the norm of the overlap function: 

|B B
A AS I I=< >

( )B nA=

1/2( 1) |B
A A BI A ϕ ϕ= + < > - overlap  function 

nA AU U U= - cluster property    (Feldmeier et al  1998)  
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SF is contributed by the overlap function at small 
distances where the effect of unitary transformations, which 
take into account short-range nucleon correlations, can be 
significant 

A.M.  And A.S. Kadyrov, PRC  82, 051601(R) (2010) 

At  distances larger then correlation region the overlap function is intact, 
while it is distorted at small distances.  

nA nAr R> 1nAU → and 
BB
AAI I→ 

Invariance of the sum rule. 
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Another important theorem 
Reaction amplitudes are invariant under short-range unitary transformations 

Let  us consider the transfer reaction  ( , )A a b B
( ) (0) ( ) ( )

2i i M u rα
α α α

α

µ
π

+ +Ψ = Ψ − Φ∑ asymptotic  behavior  

Rearrangement channel:                       ,                            b Bα = +
Projection of  asymptotic term of             on       :               ( )

i
+Ψ α
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M M αα = reaction  amplitude  is invariant 

( , ' )B e e p A -the theorem  holds 
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invariant under short-range unitary  
transformations  
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Green’s theorem: 

Let us do now  standard  approxination: 
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( )|ep B eBpAV ϕ χ + > not invariant under short-range unitary  
transformations 

( ) ( ) ( ) ( )( ) ( )C
eA pA A eA pA A eA pA AE T U U Vχ χ ϕ χ χ ϕ− − − −− = + +

( ) ( )( ) ( )C
B eB B eB B eBE T V Uϕ χ ϕ χ+ +− = +



W. H. Dickhoff, J. Phys. G 37, 064007 (2010). 
O. Jensen, G.  Hagen, M. Hjorth-Jensen, B. Alex Brown,  
and A. Gade, PRL. 107, 032501 (2011)  

Microscopic coupled-cluster calculations of the spectroscopic factors for proton  
removal from the closed-shell oxygen isotopes                         with the chiral  
NN interaction at next-to-next-to-next-to-leading order. 
1. Significant quenching of the SFs due to the coupling-to-continuum. 
2. Role of correlations beyond of mean field: SF for p1/2 proton removal 
from         :  SRG with      

14.16,22,24,2O

24O 13.2, 3.4, 3.6 fmλ −=
Equation of motion coupled clusters -  reduction of 20 − 25% over the range of       
considered. Confirms importance of correlations beyond the mean-field. 

λ

Not clear about the size of reduction if the range of      is increased, 
but it is clear that the short-range correlations play important role  
causing ambiguity of the  microscopically calculated  SFs.  

λ

O. Jensen, G. Hagen, T. Papenbrock, D. J. Dean, and J. S. Vaagen, PRC 82, 014310 (2010).   
 The spectroscopic factor is not an observable, as it depends on the employed 

Hamiltonian or model. In nuclear physics, the high-momentum parts of the 
interaction are unconstrained and modeled in different ways. Thus, the short-
ranged part of the wave function is model dependent, and so is an overlap 
between wave functions. Therefore, the spectroscopic factor is merely a 
theoretical quantity and cannot be measured. 
R. J. Furnstahl and H. W. Hammer, Phys. Lett. B 531, 203 (2002). 
R. J. Furnstahl and A. Schwenk, arXiv:1001.0328v1 



Does  the spectroscopic factor “provides a useful basis 
for the comparison of experiment and current nuclear 
models” ?    Macfarlane  and French 

2. Phenomenology- extraction from experiment. 

Drastic approximations.  
In the exact coupled channels approach  no SF appears. 
Faddeev equations – solution gives reaction amplitudes, not SFs.  
One of the main approximations: 

1/2B
A nA nI S ϕ≈

Many-body 
object 

Single-particle  
object 

Exact only in the external region, where  
n-A  nuclear interaction can be neglected 
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1/2B
nA nA nAC S b= This equation is correct only in the external region and  

         is nothing but  normalization coeffcient between the ANC 
          and  single-particle  ANC    

nAS
B
nAC nAb

Only extension of this equation to the whole region makes           SF:   nAS

| |B B
A A nA nA nA nAI I S Sϕ ϕ< >= < >=

How robust  is  parameterization of the nuclear transfer reaction in terms of  SFs? 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Nuclear reaction cross section is quite complicated  
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∆ = − = + −



1-st approximation:  transition from exact to distorted waves. The accuracy is unclear. 
The contribution from coupled channels is lost.  Effectively is taken into account through OP. 
Both post  and prior form are equal but  reflect different physics. 
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We still don’t have  overlap function to  introduce the SF 
2-nd  approximation: introduce overlap 
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 3.   Approximation  of  the overlap function           by           is questionable. 
As many-body object         contains not only mean-field effects but also residual  
interactions  important on the surface (in the shell-model language).  
Short-range  correlations in microscopic approach. 
Approximation  by the single-particle wave function           in the mean-field (Hartree-Fock) 
may  not be adequate.  
4.                           must be fulfilled  whenever                           is being used. 
Puts strong limitations  on  SF  and provides check of consistency of the single-particle 
approximation, because ANC can be measured or calculated.   
A.M.  and  F. M. Nunes, PRC 72, 017602 (2005) 
A.M.,  F. M. Nunes, and P. Mohr, PRC 77, 051601(R) (2008) 
( talk by P. Capel) 
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48 49Ca( , ) Cad p 2 1( ) 32.0 3.2 fmB
mAC −= ± from  sub-Coulomb stripping 
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Standard  approach with Hartree-Fock mean field. 
Jenny Lee  et al., PRC 73, 044608 (2006) 

0.74 0.08S = ± exp 

0 1.245 fm,r =
2 1( ) 24.4 fmB

mAC −=

We don’t check the theory, the uncertainty is large.  
Optical potential uncertainty and DWBA accuracy.  CDCC is better 
but not resolve the  problem.  
The only quantity, which can be extracted is the ANC. 

I challenge any result of (d,p) analysis and require to provide the ANC 
along with  SF.   The peripheral part gives the dominant contribution 
at energies  < 50 MeV/A, more than 80%.  Underestimation  of the ANC  
just by 10%  will increase the SF by 50%.   
 

If  information about ANC is used 

1, 3 / 2, 5.14 MeVl J ε= = =
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3. New insight  into deuteron stripping populati g bound states and resonances.   
From surface  integral formalism to the generalized R-matrix.     

A. M. PRC 84, 044616 (2011)  

Here I will demonstrate what we really measure in deuteron stripping 
at low energies 

In collaboration with I. Thompson,  J. Escher, LLNL 

Start with DWBA and end up with CDCC.  Both transfer to bound states and especially 
to resonances are considered. 
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,nA pBr r -Jacobian variables 

The amplitude for deuteron stripping to bound states and resonances is parameterized  
in terms of the reduced widths and  boundary conditions- generalized R-matrix for  
stripping  









Current work:  
Generalized Faddeev equations  in the AGS form taking into account 
target excitations – ultimate goal to couple different channels  with realistic potentials 
(in collaboration with  C. Elster and F. Nunes) 
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