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But what have you done for me lately?

Ab initio nuclear calculations have had great success over the past 15 years

Nuclear structure does indeed have quantitative roots in the vacuum NN interaction

Several features of light-nucleus energy spectra are reproduced:
• Overall scale of binding energy
• Orderings of Jπ states (including 10B ground state, sensitive to NNN

force)
• Spin-orbit splittings (also sensitive to NNN)

Quantum Monte Carlo achieved some of these things first

QMC dependence on A is steeper than Moore’s Law, so it may not go beyond
A = 12 without some big change to algorithms

Many things remain to be done at A ≤ 12: reactions, transitions, overlaps, etc.



Quantum Monte Carlo, part I: Interactions

We work with the Argonne v18 nucleon-nucleon potential
(18 operator terms, full EM, charge symmetry
breaking, χ2

ν = 1.09)

Three-nucleon interaction: Urbana IX fitted to 3H binding, saturation density
Illinois-x fitted to 23 bound & narrow levels
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VMC & GFMC as presently formulated need local interaction



Quantum Monte Carlo, part II: Methods

We want to find nuclear energies and wave functions from the interaction

ĤΨ(r1, r2, ..., rA) = EΨ(r1, r2, ..., rA)

With one equation for each spin/isospin channel, this is some 270,000 coupled
channels in 33 variables for the case of 12C

I use two methods as successive approximations:

• Variational Monte Carlo (VMC)

• Green’s function Monte Carlo (GFMC)

Instead of a spatial basis, QMC methods operate on samples of the wave
function at discrete points in the 3A-dimensional configuration space



A sampling of the quantum Monte Carlo results
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Quantum Monte Carlo results

The variational Monte Carlo (VMC) method give a first approximation, then
Green’s function Monte Carlo (GFMC) projects out the solution

Energies in 60 states up to A = 10 are reproduced to better than 700 keV
RMS (with four fitted parameters of the three-nucleon force)

We have also successfully computed:

• RMS radii and quadrupole moments are computed, mostly with success

• β and γ transition rates

• α+ n scattering phase shifts

• pickup and stripping cross sections (via form factors & spectroscopic
factors)

• (e, e′p) cross sections



Asymptotic normalization coefficient (ANC): definition

Many-body wave functions at large cluster separations factorize into clusters
times a known shape:

Φ3He(rpd →∞) =
∑
l=0,2

CljφdφpYlm(r̂pd)W−η,l+1
2
(2krpd)/rpd

At long range, nuclear dynamics just set E (→ η, k) and Clj



Why compute ANCs?

Should be useful for astrophysics

Relatively few ANCs have been measured −→ an opportunity for pre- rather
than post-diction

ANCs can be computed from ab initio wave functions, but accurate results are
a challenge (reasons will follow)

ANCs provide a learning problem for computational techniques needed for ab
initio scattering/reaction calculations

“Indirect” approaches to ANCs might provide a path for improving asymptotic
tails of QMC wave functions (quadrupole moments, etc.)



Relation between ANCs and observables

Clearest case is low-energy direct capture, X + Y −→ Z + γ

At E well below the Coulomb barrier, the initial-state wave function has very
small amplitude in the nuclear interior (has to tunnel), large r dominates
matrix element, σ ∝ C2

lj

Bound states produce negative-energy poles in the scattering amplitude
−→ ANCs ∝ residues and can sometimes be extracted from analytically-
continued scattering data (1970s)

Most ANC determinations (usually motivated by astrophysical capture) come
from transfer, knockout, or breakup reactions

These are special cases of “spectroscopic factor” experiments, requiring
demonstrated independence from small-r contributions



ANCs in transfer reactions

ANC or spectroscopic factor experiments are meant to probe the cluster overlap
function

R
JA−1JA
lj (r) ≡

∫
A
[
Ψ
JA−1
A−1 [χYl(r̂)] j

]
†
JA

δ(r − rcc)
r2

ΨJA
A dR

and particularly the spectroscopic factor

Slj ≡
∫
R2
lj(r)r

2dr

(though this is a questionable meeting point for theory and experiment;
see recent papers by Mukhamedzhanov, Jennings, etc.)

Since Rlj(r → ∞) = CljW−η,l+1
2
(2kr)/r, the ANC Clj can in principle be

isolated in data restricted to large impact parameter

Some of the usual limitations (e.g. optical potentials) apply just as well to Clj
as to Slj

Consistency of Rlj between reaction & structure theory is easier for Clj than
for Slj, provided that you can prove peripherality



Why quantum Monte Carlo ANCs require effort

GFMC requires all the work of variational Monte Carlo plus more, so for now I
work with VMC wave functions:

ΨT = [3-body operator functions]× [2-body operator functions]

× [scalar functions]× [shell-model-like orbital/spin/isospin structure]

Each piece contains variational parameters, found by minimizing energy as
computed by Monte Carlo integration

The VMC ansatz is very good and allows rather accurate calculations of energies
and other observables (GFMC polishes VMC solutions down to the correct
solution)



Barriers to getting ANCs from quantum Monte Carlo calculations

The VMC wave functions account very well for short-range correlations but
generally get the long-range asymptotics wrong

Correcting the long-range problems in a given clusterization channel without
causing other problems is difficult (other channels get wrecked...)

Clj = rRlj(r)/W−η,l+1
2
(2kr) doesn’t work because long-range shapes are

generally wrong

Points are Rlj from VMC

Overlap is a Monte Carlo integration

Curve is W−η,l+1
2
(2kr)/r

Where do I match them?

Basis methods have the same problem



Integral relation for the ANC

There is a better way than explicit overlaps, ideally suited to QMC methods
(appears in literature of 1960s, 1970s; this form from ∼1990)

The Schrödinger equation

(H − E) ΨA = 0

may be separated into parts internal to ΨA−1 and parts involving the last
particle (distance rcc away) to yield

ΨA = − [Trel + VC +B]−1 (Urel − VC) ΨA

which implies

Clj =
2µ

k~2w
A
∫ M−η,l+1

2
(2krcc)

rcc
Ψ†A−1χ

†Y †lm(r̂cc) (Urel − VC) ΨAdR

M−η,l+1
2
(2kr) is the “other” Whittaker function, irregular at r →∞,

and R = (r1, r2, · · · , rA), with rcc = rA − 1
A−1

∑A−1
i=1 ri



Why is any of this useful?

Clj =
2µ

k~2w
A
∫ M−η l+1

2
(2krcc)

rcc
Ψ†A−1χ

†Y †lm(r̂cc) (Urel − VC) ΨAdR

The power of this approach lies in the factor (Urel − VC)

It contains the potential, but only terms linking the core to the last particle:

Urel =
∑
i<A

viA +
∑

i<j<A

VijA

At large separation of the last nucleon, Urel → VC , so Urel − VC → 0

Integrand goes to zero at rcc ∼ 7 fm with AV18+UIX

QMC methods are good at integration over the wave function interior, bad at
the exterior

Closely related to Lippman-Schwinger equation (and to Pinkston-Satchler or
Kawai-Yazaki overlaps); used by Mukhamedzhanov & Timofeyuk since∼ 1990



ANCs: 3He → dp

s-wave ANC integrand & integral d-wave ANC integrand & integral

Points are Monte-Carlo sampled integrand; solid curves are cumulative integrals

For 3He→ dp, we haveCdps = 2.131(8) fm−1/2 ,Cdpd = −0.0885(7) fm−1/2

C
dp
d converges just where sampling gets sparse in the explicit overlap



Application to the VMC wave functions

I’ve implemented the integral approach to the ANC within the VMC code, building
on Wiringa’s spectroscopic factor routines

I’ve applied the integral method to Wiringa’s latest Argonne v18 + Urbana IX
(AV18+UIX) wave functions for A ≤ 9 in almost every combination of
particle stable A- and (A− 1)-body states

I have to choose a separation energy, either experimental or AV18+UIX, in
evaluating each integral

It quickly became apparent that results match experiment only when the experimental
separation energy is used

(Retrospective no-brainer: otherwise we’re comparing against different functions)



8Li→ 7Li + n summarizes the whole project

ANC (fm−1) VMC: AV18+UIX binding VMC: Lab binding Experiment
C2
p1/2 0.029(2) 0.048(3) 0.048(6)

C2
p3/2 0.237(9) 0.382(14) 0.384(38)



Readable results, where there are “experimental” data

to

2.13

(full range to 2.0)

Small error bars are VMC statistics

Large ones are “experimental”

Sensitivity to wave function construction
seems weak but hard to quantify

A ≤ 4 clearly dominated by systematics,
also old

With a couple of exceptions, these are the
first ab initio ANCs in A > 4



Comparison with what came before

Timofeyuk has pursued a “hybrid”
approach to the ANC integral for a
long time

Wave functions come from p-shell model,
integral from M3YE potential

Uncertainties have been hard to estimate

Colors denote shell model used in
Timofeyuk 2010

Millener Boyarkina CK816

Attempts to derive ratios of
isobaric-analogue ANCs from those
calculations don’t seem to hold up



The results, 3 ≤ A ≤ 9 one-nucleon removal

RAPID COMMUNICATIONS

KENNETH M. NOLLETT AND R. B. WIRINGA PHYSICAL REVIEW C 83, 041001(R) (2011)

TABLE I. ANCs computed from Eq. (5) for given A-body nuclei, (A − 1)-body residual nuclei, and angular momentum channels lj or
2s+1l. Units are fm−1/2, and f -wave ANCs have been multiplied by 103. Error estimates reflect Monte Carlo statistics only, and columns left
empty are zero by exact symmetries. Asterisks denote first excited states.

A A − 1 s1/2 d3/2 Cd 3/2/Cs 1/2

3H 2H 2.127(8) −0.0979(9) −0.0460(5)
3He 2H 2.144(8) −0.0927(10) −0.0432(5)
4He 3H −6.55(2)
4He 3He 6.42(2)

A A − 1 p1/2 p3/2 f5/2 × 103 f7/2 × 103

7Li 6He 3.68(5)
7Li∗ 6He 3.49(5)
7Li 6Li 1.652(12) 1.890(13) −78(20)
7Li∗ 6Li −0.543(16) −2.54(4)
7Be 6Li −1.87(3) −2.15(3) 63(9)
7Be∗ 6Li 0.559(16) 2.59(5)
8Li 7Li 0.218(6) −0.618(11) 5.2(5) 2.5(15)
8Li∗ 7Li −0.090(3) 0.281(5) −0.6(2)
8B 7Be 0.246(9) −0.691(17) 1.1(2) −1.1(5)
9C 8B −0.309(7) 1.125(12) 1.9(5) −0.5(18)
9Li 8Li 0.308(7) −1.140(13) −4.1(10) 5(3)
9Li 8Li∗ −0.122(3) 0.695(7) −1.1(6)
9Li 8He −5.99(8)
9Be 8Li 5.03(6) 9.50(11) 35(34) 257(112)
9Be 8Li∗ 6.56(5) −6.21(7) 364(40)

A A − 1 2p 4p 2f × 103 4f × 103

7Li 6Li 2.510(18) 0.029(18) −78(20)
7Li∗ 6Li −2.57(5) −0.33(3)
7Be 6Li −2.85(4) −0.04(4) −63(9)
7Be∗ 6Li 2.63(5) 0.34(3)
9Li 8Li∗ −0.599(7) −0.373(7) 1.1(6)
9Be 8Li∗ −0.25(9) −9.03(8) −364(40)

A A − 1 4p 6p 4f × 103 6f × 103

9C 8B 0.868(14) 0.779(12) 0.1(19) −2(1)
9Li 8Li −0.882(15) −0.785(12) 3.3(34) 5.2(19)
9Be 8Li 10.75(12) −0.25(10) 256(117) 42(65)

A A − 1 3p 5p 3f × 103 5f × 103

8Li 7Li −0.283(12) −0.591(12) −0.3(16) −5.8(10)
8Li∗ 7Li 0.220(6) 0.197(5) 0.6(2)
8B 7Be −0.315(19) −0.662(19) −0.6(5) −1.4(4)

with A = 3, 4 have substantially identical ANCs for BH and
Bexpt because the AV18 + UIX interaction was tuned to have
BH $ Bexpt in these systems. Pisa ANCs converted to our
conventions may be found in Ref. [27].)

For A > 4 ANCs, experimental constraints have been
inferred almost entirely from transfer [1–5,7,9,38], knockout
[8], or breakup [6] reactions, and are of generally more recent
vintage than the A ! 4 ANCs. In some cases, components
of different j contribute indistinguishably to differential cross
sections, which then constrain only the sum

∑
j C2

lj . These
cases are indicated in Fig. 3 and shown as the square root of the
sum for comparability of error bars. Our p-shell ANCs are in
broadly good agreement with those inferred from experiment,
particularly for the well-measured A = 8 ground state ANCs

as discussed above. (Our calculations for A = 8 also agree
with prior theoretical estimates of [17,39].) Reference [27]
presented many ANCs computed by applying Eq. (5) with
a simpler potential to harmonic-oscillator wave functions
derived from shell models; about half of our p-shell ANCs
disagree with those calculations by more than 25%.

The most significant differences from previous work are
in the 7Li → n 6Li ANCs. The comparison with experiment
here is difficult because of the wide range of estimates, which
extend from

√∑
C2

lj = 1.26 to 2.82 fm−1/2 just from (d, t)
at varying energy ([7], with full range shown in Fig. 3) and
include other values within that range [38,40]. The effective
ANC of Huang et al. [41], whose capture model successfully
matches 6Li(p, γ )7Be data, is 25% below ours.

041001-4

Nollett & Wiringa, PRC 83, 041001(R) (2011)

The small f -wave amplitudes are accessible with this method – unknown how
reliable (or measurable), but something new



Heights and widths

“The other day I was walking my dog around my
building, on the ledge. Some people are afraid of
heights. I’m afraid of widths.”

– Steven Wright

We have ab initio energies for many narrow unbound levels (computed as
bound)

Figuring out how to get widths has been difficult

There is an obvious but laborious way – explicit calculation of phase shifts at
many energies, extraction of pole (has been done for 5He states)

Other paths have not panned out (e.g. “decay” rate in GFMC)



Widths as ANCs

Widths are closely related to ANCs, so maybe there’s a cheap way to estimate
them

Hand-waving description:

An unbound wave function at large radius looks like

ψ(r →∞) ∝ [Fl(kr) cos δ +Gl(kr) sin δ] /r

so that at resonance (δ = 90◦; as our pseudobound states should have)

ψ(r →∞) = Cljφ1φ2Gl(kr)/r

The flux per unit time through the surface is |Clj|2v = ~k
µ |Clj|

2, so

Γ '
~2k

µ
|Clj|2

This is be shown to be nearly exact in papers by Humblet (not by this reasoning)



Widths as ANCs

The relation

ψ(r →∞) = Cljφ1φ2Gl(η, kr)/r

for resonant states is mathematically almost the same as

ψ(r →∞) = Cljφ1φ2W−η,l+1
2
(2kr)/r

for bound states

The integral method also applies to resonant states, except that now Fl appears
in the integral instead of M−η,l+1

2

This is used as a mathematical tool to get the asymptotics right in simpler α and
p decay models (e.g. Åberg et al. (1997) proton emitters, Russian literature
on α decay, etc.)



Testing out the integral relation for Γ

The integral estimate should apply to states that are in some sense narrow

I’ve chosen low-lying states in A ≤ 9 with width mainly/all in nucleon emission

Red: overlaps inconsistent with
resonance

Asterisk: uncomputed channels

Dynamic range of 0.0005 to
. 1.0 MeV, not otherwise
possible for QMC



Testing out the integral relation for Γ

This has been a long time coming, paper in production now

13

TABLE I: The results of integral-relation calculations of widths. Results are shown from calculations in which the channel
energy was assumed equal to its value from GFMC calculations with the AV18+UIX Hamiltonian and in which the channel
energy was taken from experimental results. Where no experimental value is available, the results in the “Experimental energy”
column were computed using the GFMC energy with the AV18+IL7 hamiltonian, and they are indicated by parentheses. The
column “Matches 90◦?” indicates whether the overlap function seems to correspond to that of a resonance state, as discussed
in Sec. IVA. Energies are relative to the decay threshold in the center-of-mass frame, and errors given for calculations include
only Monte Carlo sampling. NEED TO FOOTNOTE SOURCES.

State Daughter Experiment From Exp energy From AV18+UIX energy Matches ζ
E (MeV) Γ (MeV) ΓV MC (MeV) EUIX (MeV) ΓV MC (MeV) 90◦?

5He(3/2−) 4He(0+) 0.798 0.648 [50] 0.307(5) 1.39 0.684(11) no 0.460
5He(1/2−) 4He(0+) 2.07 5.57 [50] 0.582(13) 2.4 0.711(15) no 0.429
7He(3/2−) 6He(0+) 0.445 0.15(2) 0.114(4) 2.3 1.184(9) yes 0.092
7He(1/2−) 6He(0+) 3.045 – 1.98(9) 2.91 1.87(8) no 0.092
7He(1/2−) 6He(2+) 1.25 – 0.42(3) 1.11 0.36(2) yes 0.067
7He(1/2−) sum 3.045 2.0(1.0) 2.40(12)a 2.91 2.22(11)a
7He(5/2−) 6He(2+) 1.57 1.99(17) 1.31(10)a 1.87 1.66(13)a no 0.165
7Li(5/2−

2 ) 6Li(1+) 0.204 0.0646 0.0483(17)a 1.55 0.92(3)a yes 0.055
7Be(5/2−

2 ) 6Li(1+) 1.60 0.19(5) 0.426(14)a 2.5 1.00(3)a yes 0.055
8B(1+) 7Be(3/2−) 0.632 – 0.0383(14) 1.47 0.346(12) yes 0.001
8B(1+) 7Be(1/2−) 0.203 – 0.00105(6) 1.38 0.51(3) yes 0.003
8B(1+) sum 0.0357(6) 0.0394(14) 0.86(3) yes
8Li(3+) 7Li(3/2−) 0.223 0.032(3) 0.0344(18) 2.5 1.12(6) yes 0.007
8B(3+) 7Be(3/2−) 2.18 0.39(4) 0.38(2) 2.4 0.46(2) yes 0.007
8B(0+) 7Be(3/2−) [2.56] – [0.65(4)] 2.39 0.57(3) no 0.005
8B(0+) 7Be(1/2−) [2.24] – [1.23(6)] 2.30 1.29(7) no 0.004
8Li(0+) 7Li(3/2−) [0.97] – [0.37(2)] 0.94 0.389(15) no 0.005
8Li(0+) 7Li(1/2−) [0.62] – [0.516(18)] 0.62 0.72(2) no 0.004
8Be(1+) T = 1b 7Li(3/2−) 0.385 – 0.0089(3) 1.2 0.152(3) yes 0.003
8Be(1+) T = 0b 7Li(3/2−) 0.895 – 0.150(4) 0.5 0.0354(10) yes 0.003
8Be(1+) sumb 7Li(3/2−) 0.149(6) 0.159(4) 0.187(3) yes
8Be(3+) T = 1b 7Li(3/2−) 1.81 – 0.166(8) 3.68 0.60(3) yes 0.007
8Be(3+) T = 0b 7Li(3/2−) 1.98 – 0.314(14) 2.33 0.43(2) yes 0.003
8Be(3+) T = 1b 7Be(3/2−) 0.170 – 0.0115(6) 2.09 0.44(2) yes 0.007
8Be(3+) T = 0b 7Be(3/2−) 0.335 – 0.050(2) 0.74 0.161(8) yes 0.004
8Be(3+) sumb sum 0.50(3) 0.542(16) 1.63(4) yes
9Li(5/2−) 8Li(2+) 0.232 0.10(3) 0.145(4) 0.97 1.17(3) yes 0.003
9Li(7/2−) 8Li(2+) 2.366 – 0.0012(7) 3.64 0.0031(16) no 0.045
9Li(7/2−) 8Li(3+) 0.111 – 0.0427(8) 0.23 0.126(3) yes 0.006
9Li(7/2−) sum 0.04(2) 0.0439(11) 0.129(3)
9Li(3/2−

2 ) 8Li(2+) 1.316 – 0.522(13) 1.51 0.631(17) no 0.014
9Li(3/2−

2 ) 8Li(1+) 0.340 – 0.172(4) 0.50 0.302(8) yes 0.006
9Li(3/2−

2 ) sum 0.6(1) 0.694(18) 0.932(19)
9C(1/2−) 8B(2+) 0.918 0.10(2) 0.102(3) 1.54 0.428(11) yes 0.006
9Be(1/2−) 8Be(0+) 1.110 0.86(9) 0.80(2) 4.37 4.89(12) yes 0.0005
9B(3/2−) 8Be(0+) 0.185 0.00054(21) 0.00058(2) 1.9 0.92(2) yes 0.0003
9Be(7/2−) 8Be(0+) 4.715 – 0.0082(4) – – yes 0.005
9Be(7/2−) 8Be(2+) 1.685 – 0.40(2) – – yes 0.003
9Be(7/2−) sum 1.2(2) 0.41(2)a – – yes
9B(7/2−) 8Be(2+) 4.13 2.0(2) 0.82(4)a – – yes 0.003
8B(2+

2 ) 7Be(3/2−) 2.41 0.12(4) 0.425(15) – – yes 0.004
8B(2+

2 ) 7Be(1/2−) 1.98 0.24(11) 0.039(2) – – yes 0.010
8Li(2+

2 ) 7Li(3/2−) [2.18] – [1.00(4)] – – yes 0.004
8Li(2+

2 ) 7Li(1/2−) [2.06] – [0.105(6)] – – yes 0.010
aOpen channels other than one-nucleon emission were neglected in the calculation (alpha or non-sequential).
bSee the text for discussion of the effects of isospin mixing in the observed 1+ and 3+ states of 8Be.



Overlaps at all radii

The ANC/width integrals are special cases of the overlaps of Pinkston & Satchler
(or Kawai & Yazaki):

Rlj(r) ∝
[
cos δlj +

∫ ∞
r

Gl(krcc)

rcc
Ψ†A−1χ

†(Urel − VC)ΨAdR

]
Fl(kr)/r

+

[∫ r
0

Fl(krcc)

rcc
Ψ†A−1χ

†(Urel − VC)ΨAdR

]
Gl(kr)/r

90◦ phase shift means no Fl component at r →∞

If this Rlj with cos δlj = 0 is a poor match to the directly-computed overlap at
small r, then δ 6= 90◦ for that channel −→ my assumptions are invalid

Cases that fail this test generally have small spectroscopic factors



Overlaps at all radii
Good Good Bad

Points: Direct overlap Curves: From integral relation



Overlaps at all radii: Bound states

The integral relations contain more information about the potential than does
the VMC wave function −→ better overlaps



Uses of overlaps

The overlap functions can help to make reaction theory consistent with structure
theory (breakup, (d, p), (3He, d)...)

Several papers now use VMC overlaps (computed directly, not Pinkston-Satchler)
as inputs via fitted Woods-Saxon wells:

(T + VWS)Rlj = ERlj

with Rlj from VMC

• Wuosmaa et al. PRC 72, 061301(R) (2005); PRL 94, 082502 (2005);
PRC 78, 041302(R) (2008)
• Kanungo et al., PLB 660, 26 (2008)
• Grinyer et al. PRL 106, 162502 (2011)

With overlaps as input & no further fudging, experiment & VMC results agree
(same spectroscopic factor – even for 7Li, pace ubiquitous graphs)



Some examples

DWBA with 〈A−1|A〉 vertices from VMC
overlaps

There’s still an optical potential, e.g. for
8Li+d
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Integral method vs. factorized widths from spectroscopic factors

I could have always made rough estimates of widths using a factorization SljΓs.p.,
with Slj from QMC

Wigner (causality) limit is easy to use for Γs.p. but not much good

Shell-model studies often use “single-particle” widths computed from Woods-
Saxon well

“Standard” geometric parameters are used & depth is set to match resonance
energy, obtaining ΓWS

This width is multiplied by the spectroscopic factor: SljΓWS

Geometric parameters should then be varied within “reasonable” bounds to
check sensitivity



Is the width integral better than the Woods-Saxon width times Slj?

blue: consistent with 90◦ via P-S red: not consistent

For narrow states without open α channels, it’s good and apparently an improvement

Mean of vertical axis, states where all channels counted & VMC wave function
“looks resonant:” 1.06± 0.07 integral, 0.75± 0.15 Woods-Saxon
(χ2
ν = 1.5 vs. 34)



Widths and state identification: 7He & 9Li

New theoretical information should be useful for Jπ identification of states

The 7He ground state (3
2
−

) is not too bad: Γ = 114(4) keV vs. Γ = 125+40
−15

measured

Neither 7He(1
2
−

) nor 7He(5
2
−

) overlaps look like 90◦ phase shift (both are

broad); 1
2
−

width isn’t bad

Computed 9Li widths support Jπ assignments of Wuosmaa et al. 2005:
3/2−, 1/2−, 5/2−, 3/2−, 7/2−



Widths and state identification: 9He

Broad 1
2
−

matches width claimed at
Dubna (but not elsewhere)

I find < 5 keV width for 3
2
−

, but direct
overlap is inconsistent with 90◦

Did not consider unbound decay
products (so no decays through
8He(2+))

There should be even-parity intruders, but those VMC aren’t well developed,
and 8He(2+) should be important



Widths and state identification: 8B

Mitchell et al. 2010 claim new broad 0+ & 2+ states in 8B (at low significance)

0+ width calculations look unreliable –
90◦ test failed

I can assume a range of E in the width
and see what Γ corresponds

Widths to 7Be & 7Be∗ computed
separately

VMC 2+ states are compatible with 90◦, but I don’t reproduce Mitchell widths
of 8B(2+

2 ) state



What next?

α (and other cluster) widths & overlaps once the code is more-generally written

Tests against scattering calculations to see whether I can get the AV18+UIX
widths this way

GFMC and IL7 (better match to experimental thresholds)

Similar things are being done as pseudobound approaches to scattering δ(E)

(Horiuchi et al., Kievsky et al., etc.) – some of that can be adapted

Coupled-channel problems will require some way of extracting surface amplitudes
from GFMC, integrals are probably the way to do that

Energy resolutions below the 100 keV range are difficult for GFMC, so the
integral approach will beat phase-shift mapping for really narrow states


