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Breakup reaction

Breakupused to studyxoticnuclear structures
e.g. halo nucleil:

» large matteradius
o small S, or Sy,

= seen as densmrewith neutronhalo

Short lived=- studied through reactions likeeakup
halodissociates froncoreby interaction with target

Information sought through reactions:
» Binding energy (e.g!’C)

» [j of halo neutron(s) (e.g!Ne)
o SF |



Introduction

Reaction models rely osingle-particlenodel
of a two-body projectile¢orec + fragmentf):

L+ V(1) — €Jon;(r) =
with [ [ ()| 2dr = 1
In reality, there is admixture of configurations:
Y (J7) = ATIX(JIT) @ f(1) +
The overlap wave function is
iy (r) = (X (I |ag ()Y (T7))
Spectroscopidactor:S;; = [, |4;(r)|*dr

Single-particleapproximation= v, = /S
= usual ideas;; = o." /ot |



HBe+Pb—!'"Be+n+Pb @69AMeV

(our) Theory:

Experiment:

[Fukudaet al. PRC 70, 054606 (2004)]
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Outline

o Breakupmodels:CDCC, Time-Dependent,
DynamicalEikonal Approximation

o What do we probe in breakup ?

» Peripheralityof breakup reactions (ANC vs SF)
» Description of the
» Projectile-target interaction/fp7)

» Influence of couplings upon halo wave function
Can we get SF from ANC?

o Ratioof angular distributions:
a new way to remové&’p»; dependence

o Conclusion |




Framework

(/) modelled as a two-body system:
core(c)tloosely boundragment( f) described by

Ho =T, + Vg (r)

)

V. adjusted to reproduce X .
bound stated,, » b
and resonances -

TargetT seen as »

structureless particle g \D

P-T interaction simulated by optical potentials
= breakup reduces tinree-bodyscattering problem:

[TR + Hoy+ Vo + VfT] \IJ(R, T) — ET\IJ(R, T‘)
with initial condition ¥ (r, R) S e B2t Py (1)



CDCC

| Solve the three-body scattering problem:
[TR + Ho+ V.p + VfT] \If(r, R) — ET\IJ(’I", R)
by expandingl on eigenstates off,
Leads to set of coupled-channel equations (hé&lCe
TR+ e+ Vil xi + 222 Viix; = ErXi,
with Vii = <(I>7;’VCT + VfT|(I)j>
The continuum has to b#scretisedhenceCD)

[Tostevin, Nunes, Thompson, PRC 63, 024617 (2001)]
Fully quantalapproximation

No approx. onP-1' motion, no restriction on energy
But expensiveeomputationally (at high energies)



Time-dependent model

P-T motion described byglassical trajectonR(t)
[Esbensen, Bertsch and Bertulani, NPA 581, 107 (1995)]

[Typel and Wolter, Z. Naturforsch. A54, 63 (1999)]
P structure described quantum-mechanicallyHhy
Time-dependent potentials simuld®el’ interaction
Leads to the resolution of time-dependent
Schrodinger equationfQ)

0

zh%\lf(r, b, t) — [H() + V;;T(t) + VfT(t)]\I/(T‘, b, t)

Solved for eaclb with initial conditionV — &,

t——00

Many programdave been written to solveD
Lacksguantum interferencdsetween trajectories



Dynamical Eikonal Approximation

Three-body scattering problem:
[TR + Ho+ V.p + VfT] \If(r, R) — ET\IJ(’I", R)
with conditionU — 54,

Z——00 _ ~
approximation: factoris@ = e'* 4 ¥

TRV = eiKZ[TR + v Py 4 MSTU2]{I\J

NeglectingT vs Pz and usingEr = £uprv? + €

9 - .
ihva—Z\If('r, b,7)=|Hy— e+ Vor +Vir|¥(r, b, 2)

solved for eaclb with condition? —— Py (r)

L ——00

This Is the dynamical eikonal approximatidng£A)
[Baye, P. C., Goldstein, PRL 95, 082502 (2005)]
Same equation aBD with straight line trajectories



LC + Pb @634AMeV

Comparison ofCDCC, TD, andDEA
[PC, Esbensen, and Nunes, PRC 85, 044604 (2012
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All models agree DEA agrees withCDCC
Data: [Nakamurat al. TD reproduces trend
PRC 79, 035805 (2009)] but lacks oscillations




ANC vs SF

1SS, = 0. F Joil ?

|s breakup really sensitive t6F ?
l.e. do we probe the whole overlap wave function ?

Isn’t breakupperiphera?
l.e. sensitive only to asymptotics ?

NG ) —> Cl] "
AsymptoticNormallsatlonCoefflc:lent:Cl]-

Test this with two descriptions of projectile

with but same asymptotics |
[PC and Nunes, PRC 75, 054609 (2007)]



SuSy transformations

Use 2V, with different interiorbut same asymptotics
obtained bySuSytransfo D. Baye PRL 58, 2738 (198])
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Peripherality of breakup reactions

(do/dQ)

SB+°°Ni @ 26MeV
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No difference betweedeepandSuSypotentials

at low and intermediate energies, on light and heavy targets
for energy and angular distributions

= breakupprobes onlyANC

= SFextracted from measurements are questionaple
[PC, Nunes, PRC 75, 054609 (2007)]




Similar study

| Garcia-Camacho et al. NPA 776, 118 (2006)
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Using either single particle wave function (solid)
or its asymptotic expansion (dashed)

= same conclusiowith SF1 |



Asymptotic version

Y1; andoy,;; exhibit same asymptotics:

NG ) — Cl] " G ) bnl] e ™
= Asymptotlc version of the single- part|cle approx.:
Ci; %
wlj r—>o<\> nlz] ¢nlj — Sl] b2

SinceANC accessible to breakup reactions,
can we still extrac6Ffrom reaction data?

What effects otouplingsbetween configurations ?
» 1);; compared t,,;

9 SFSlj
o ANC Clj |



c-f system with couplings

We use a model whem@recan be In different states
$, (&) described as levels afeformed rotor
U =37 i (1) V() (6)

Thec-f Hamiltonian reads [Nunes NPA 596, 171 (1996)]
HO — Hc + T’r + chf(raﬁaf)

. ~1
with Vo (r, 8,€) = Vo |1+ exp (a2l |

a

= set ofcoupled equations
T+ Vii(r) + By — €|hi(r) = — 3oz Vi ()i (1),
with Viy(r) = (@i(§)Vi(Q)[Ver (r, 5, 8)|Pir(€) Vir (£2))

We analyse the validity adingle-particleapprox.
for one-neutron halo nucleu$Be
[PC, Danielewicz, Nunes, PRC 82, 054612 (2019)]



Influence of coupling @ vs. ¢)

11Be = UBe+n has two bound states
® £yr = —0.504 MeV ® £ = —0.184 MeV

\Ifl/2+ = ¢31/2(I)0+ \Ijl/Q_ — ¢p1/2(1)0+
+1g3/2Po+ + Va5 /2Po+ +p3/2Pot+ + V5 /0Po+
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= single-particleapprox.fails: ¥;;(r) # \/Sijonii(r)
But, for the ground statey; , — /Ss, , 025, V0




Comparing S and C? /b

| We find v, ,, — /Ss, 1,025, V0
= Asymptotic version osingle particleapprox.?

.e. isC;;/b;,; a goodapprox.of Sy; ?

0.9 | |
#® g.s.:Smalladmixture,

N“i.: 0.8 |- o Sy

v . CoafB approx.OK

~ 0Tk A Sy
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#® e.s..Largeadmixture,
approx.fails 5 > 0.2

6
= Approx. breaks at largadmixtureand/orcouplind? |



Exploring the model

0 understand this, we push the model to its limits

1
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o General trendvalidates
S ~ C*/1?

» \erylargeadmixture
obtained even fosmall 5

o Approx. breaks down at
large couplingdor
large admixtures

= S ~ C?/b? for small couplingstrength3 and/or
when component idominant(i.e. largesS)

l.e. when coupling term in equations is small

S



Sensitivity to the c- f continuum

Is breakup sensitive only to bound-state properties?

Influence ofc- f
11Be on Pb @9AMeV
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[PC, Nunes, PRC 73, 014615 (2006)]

Sensitivity to of projectile

| can get what you want for S-... (PC 2006)



Role of continuum

Where does it come from?
p-wave contributions
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Influence of Vpr

1Be on C @67AMeV
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Sensitivity toP-T opticalpotentials

NB: Coulomb breakup less sensitiveltp,

= phenomenological inputs not free from uncertainty
= cautious when extractinHANC from data

Can we remove/reduce the sensitivity\tp,?

Maybe using thé&atiotechnique. ..



Recoll Excitation and Breakup

Assumes [R. Johnsoret al. PRL 79, 2771 (1997)]
» adiabatic approximation

> VnT =0
= excitation and breakup due tecoll of the core
Elastic scatteringee = | Fy|?(42 ),
Foo = [ |®o[2¢'Q " Tar Q x (K — K')
= scattering otompound nucleus

form factor x scattering opointlike nucleus

Similarly for breakup: 92 = | Fpg|2(22),,,
2

B —
| Fol” :Zum‘fq’ljm E)®oe'@ " T dr

= explains similarities in angular distributions
provides the idea for theatio technique. . .




Ratio technique

dow/doe = |Fro(Q)]? /| Foo(Q)|?

o completelyindependenof reaction process

not affected bywpr; I.e. the same for all targets
» probes only projectile structure
# No need to normalise exp. cross sections

Test this using Dynamical Eikonal Approximation,
[B. Baye, P.C., G. Goldstein, PRL 95, 082502 (2005)]

» without adiabatic approximation
o IncludingV,r

Alternative: doy, /dosum = \FE0\2
2
J ®ijm(E (I)oeiQ ‘Tdr

l dogum __ do_el | do_mel O-bu




Testing with DEA

1lBe+Pb @69AMeV [P. C., R. Johnson, F. Nunes, PLB 705, 112 (2011)]
N | T I I -
W0E doy/dEAQ — -
102 %_ \\\\ dUsum/dUR ....... _;
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0.1 F
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o removes most of the angular dependence

» REB predicts ratic= | Fgl?
confirmed by DEA calculations

= probestructurewith little dependence oreaction



(In)sensitivity to Vpr

=
—_

—_
3
[\V]

—_
3
w

arvan

|[Fpof? =3
HUBe+PH @ 69AMeV — -
UBetC @ 67AMeY ~~- |

—_
3
[N
-

0.05 0.1

(dop,/dEdQ) /(dogum/dY) (MeV™1)

Similar for Coulombandnucleardominated collisions
= nearlyindependenof the reaction process

0.15 0.2 0.25 0.3

Q (fm™)



Sensitivity to projectile description
Study sensitivity to

bindingenergy bound-state
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» Sensitive to botlbindingenergy ana
In both shape and magnitude

o Works better for loosely-bound projectile
(adiabatic approximation ?)



Sensitivity to radial wave function
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» Changes inF'g|* similar to those iny;
» Forward angles probasymptoticof v,
» Large angles probe theterior of w;;

may be difficult to distinguish experimentally

= Ratioscans radial wave function
= maybe can get SF



Conclusion and outlook

Good understanding of reaction process
Breakup models agree with each other/{idMeV)
SFextracted fromy . /ol BUT:

o Probes onhWANC
but maybe link with SF?

» Sensitive to description af
to be constrained by structure models?

® Sensitive toV/pr
can be reduced usingtio

Next step: improverojectile description

® core excitation, e.g. XCDCC
# Mmicroscopic description
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bLC + Pb @20AMeV
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TD = CDCC TD gives trend ofCDCC
DEA too high (lacks oscillations)
DEA peaks too early

DEAACDCCdue to Coulomb deflection
(TD straight lines)
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