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Context and questions

Interacting many-nucleon system

1 Uncorrelated single-nucleon shell structure {εAnlj}

■ Constitutes a pillar of our understanding of nuclear structure

■ Drives the physics of exotic nuclei via its evolution with N-Z
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Context and questions

Nuclear many-body problem

1 Uncorrelated single-nucleon shell structure {εAnlj}

■ Constitutes a pillar of our understanding of nuclear structure

■ Drives the physics of exotic nuclei via its evolution with N-Z

2 Only the correlated A-body problem is uniquely defined

H |ΨA
k 〉 = E

A
k |ΨA

k 〉

such that one-nucleon addition and removal reactions give access to

E
±
k ≡ ±

(
E

A±1
k − E

A
0

)
and σ±

k
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Context and questions

Nuclear many-body problem

1 Uncorrelated single-nucleon shell structure {εAnlj}

■ Constitutes a pillar of our understanding of nuclear structure

■ Drives the physics of exotic nuclei via its evolution with N-Z

2 Only the correlated A-body problem is uniquely defined

H |ΨA
k 〉 = E

A
k |ΨA

k 〉

such that one-nucleon pick-up and stripping reactions give access to

E
±
k ≡ ±

(
E

A±1
k − E

A
0

)
and σ±

k

In what sense shall we talk about {εAnlj}?

# T. Duguet, G. Hagen, PRC85 (2012) 034330
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Definition of effective single-particle energies (ESPEs)

Partitioning between "uncorrelated contribution" and "correlations"

Outcome of Schr. equation
A

︸︷︷︸

{E
±

k
/ |ΨA

0 〉 ; |ΨA±1
k

〉}

≡
Ind. particle contribution

B
︸︷︷︸

{εp / |ΦA
0 〉 ; |ΦA±1

p 〉}

+
"The rest"

C
︸︷︷︸

{∆E
p

k
/δ|Φp

k
〉}

B is usually

1 chosen = arbitrary partitioning

2 a priori = does not truly reflect A

3 as a zeroth-order approximation (HO, WS, HF. . . ) = hoping to minimize C

Question of interest

Can B = {εp} be defined

1 exclusively from A = {E±
k
/ |ΨA

0 〉 ; |ΨA±1
k

〉}?

2 independently of a zeroth-order approximation / single-particle basis used?

3 such that HF single-particle energies are recovered in HF approximation?

⇒ does an unambiguous definition of ESPEs deriving exclusively from A exist?

Effective single-particle energies in correlated many-fermion systems
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Computing ESPEs (1)

Direct one-nucleon addition/removal on a Jπ = 0+ even-even ground state

1 One-nucleon separation energies

E
+
µ ≡ E

A+1
µ − E

A
0 , E

−
ν ≡ E

A
0 − E

A−1
ν

2 Spectroscopic amplitudes (Uµ,Vν) represented in basis {a
†
p} [p ≡ (n, l , j ,m)]

U
p∗
µ ≡ 〈ΨA+1

µ |a†
p|ΨA

0 〉 , V
p∗
ν ≡ 〈ΨA-1

ν |ap|ΨA
0 〉

3 Spectroscopic "probability" matrix in basis {a
†
p}

S
+pq
µ ≡ 〈ΨA

0 |ap|ΨA+1
µ 〉 〈ΨA+1

µ |a†
q |ΨA

0 〉

S
−pq
ν ≡ 〈ΨA

0 |a†
q|ΨA-1

ν 〉 〈ΨA-1
ν |ap|ΨA

0 〉

4 Spectroscopic factors (basis independent)

SF
+
µ ≡

∑

p∈H1

S
+pp
µ , SF

−
ν ≡

∑

p∈H1

S
−pp
ν

provide the norm of one-nucleon overlap functions

Effective single-particle energies in correlated many-fermion systems
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Computing ESPEs (2)

Centroid matrix

1 Spectral-function S(ω) (energy-dependent matrix)Spq(ω) ≡
∑

µ∈HA+1

S
+pq
µ δ(ω− E

+
µ ) +

∑

ν∈HA−1

S
−pq
ν δ(ω− E

−
ν )

2 Moment of S(ω) (energy-independent matrix)M(n)
pq ≡

∫ +∞

−∞

ωn Spq(ω)dω

where M(0)
pq = δpq implies that Spp(ω) denotes a PDF for each p

3 Centroid matrix [M. Baranger, NPA149, 225 (1970)]

h
cent
pq ≡M(1)

pq =
∑

µ∈HA+1

S
+pq
µ E

+
µ +

∑

ν∈HA−1

S
−pq
ν E

−
ν

which gathers information from both additional and removal channels

Effective single-particle energies in correlated many-fermion systems
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Computing ESPEs (3)

Effective single-particle energies

1 ESPEs ≡ eigenvalues of the centroid matrix [M. Baranger, NPA149, 225 (1970)]

h
centψcent

p = e
cent
p ψcent

p [p ≡ (n, l , j ,m)]

■ ecent
p is the mean of the PDF Spp(ω) in basis {ψcent

p }

■ ecent
p reduces to εHF

p in HF approximation

2 Basis-independent definition valid for any correlated system

■ Not valid to compute hcent
pp in an arbitrarily chosen, e.g. HO, basis

■ Different from defining an unperturbed reference a priori

3 Two sets of connected but different wave functions and energies

1 Overlap functions {Uµ(~rστ ),Vν(~rστ )} decaying with {E+
µ ,E

−
ν }

2 Centroid functions {ψcent
p (~rστ )} decaying with {ecent

p }

Effective single-particle energies in correlated many-fermion systems
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Computing ESPEs (4)

Sum rule and correlations

1 Identity for nth moment of S(ω)M(n)
pq = 〈ΨA

0 |{

n commutators
︷ ︸︸ ︷

[. . . [[ap,H ],H ], . . .],a†
q}|ΨA

0 〉

2 Applied to n = 1 [M. Baranger, NPA149, 225 (1970)]

h
cent
pq = Tpq +

∑

rs

V̄
2N
prqs ρ

[1]
sr +

1

4

∑

rstv

V̄
3N
prtqsv ρ

[2]
svrt= h

∞
pq

■ Accessing ESPEs only require to compute |ΨA
0 〉

■ ecent
p − εHF

p 6= 0 due to correlations in ρ[k]

■ h∞ ≡ T+ energy-independent part of Σ(ω) in Dyson-SCGF

3 Centroids screen out most of the correlations [M. Dufour, A. Zuker, PRC54, 1641 (1996)]

■ Only monopole part of interactions V mon ≡
∑

J
(2J +1)V J involved

■ Higher multipoles responsible for genuine correlation effects

Effective single-particle energies in correlated many-fermion systems
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Why separation energies cannot be confused with ESPEs?

Spectral-strength distribution

S(ω) ≡ TrH1
[S(ω)] =

∑

µ∈HA+1

SF
+
µ δ(ω− E

+
µ ) +

∑

ν∈HA−1

SF
−
ν δ(ω− E

−
ν )

Uncorrelated system
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f7/2
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1
39Ca 41Cas1/2

0.1

1

d5/2

0.1

1

d3/2

S
κ
±

1 SF±
µ = 0 or 1

2 Card{SF±
µ 6= 0} = dimH1

Correlated system
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1

2nd order
f7/2

Ek
± [MeV]

0.1

1
39Ca 41Cas1/2

0.1

1

d5/2

0.1

1

d3/2

S
κ
±

1 0< SF±
µ < 1

2 Card{SF±
µ 6= 0}> dimH1

■ Direct addition and removal populate more states than dimH1

■ (E±
µ ,SF±

µ ) spectrum does not possess features of single-particle spectrum
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From an uncorrelated to a correlated system

EOM-CCSD calculations in Gamow-Hartree-Fock basis

1 H =T+V 2N = Chiral N3LO with Λχ =500 MeV

2 H (Λ)=T+V 2N(Λ) with Λ ∈ [2.0;3.0] fm−1 (V 3N. . . (Λ) = 0 ⇒ U (Λ)U †(Λ) 6= 1)

3 HO single-particle basis (nmax = 12; h̄ω =16 MeV) + 30 WS 2s1/2 orbitals

Probing the effect of correlations

1 Normal ordering of H with respect to |ΦHF〉 in HF single-particle basis

H = E
HF +

∑

p

εHF
p : b

†
pbp : +

1

4

∑

pqrs

V̄
2N
pqrs : b

†
pb

†
qbsbr : ≡ h

HF + Vres

εHF
p = Tpp +

A∑

q=1

V̄
2N
pqpq

2 Define Vres(λ) ≡ λVres such that H (0) = hHF and H (1) = H

3 Solve EOM-CCSD repeatedly for λ ∈ [0,1]

Effective single-particle energies in correlated many-fermion systems
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From an uncorrelated to a correlated system
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Doubly-magic 16O

■ Neutron E+
µ (λ) versus ecent

p (λ)

■ Λ = 2.4 fm−1

Switching on correlations

1 Uncorrelated limit: ecent
p (0) = E+

µ (0) = εHF
p (Koopman’s theorem)

2 Strongly correlated system as E+
µ (1) − ecent

p (1) ≈ −3 MeV

3 Centroid energies almost untouched by correlations as ∂λecent
p (λ) ≈ 0

4 Both would be significantly more affected in open-shell nuclei
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From an uncorrelated to a correlated system
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Switching on correlations in doubly-magic 24O

1 Based on SF−
1/2+

(1) the state has a strong single-particle character

2 Energy shift is however significant E−
1/2+

(1) − ecent
2s1/2

(1) ≈ −1.7 MeV

■ Small fragmented strength rejected to rather high missing energies

3 SM works with effective closed core and limited explicit dynamics

■ ecore
p coming out of fit (e.g. USDB) effectively account for e

cent. val. space
p
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Observable and non observable

Low-energy nuclear many-body problem

1 A-body problem defined within a consistent EFT at a given order in (Q/Λχ)ν

Hamiltonian H ≡
∑

ν H (ν)

Other operator O ≡
∑

ν O(ν)






=⇒







H |ΨA
k 〉 = EA

k |ΨA
k 〉

OA
k = 〈ΨA

k |O|ΨA
k 〉

2 Unitary transformation U (Λ) over Fock space

1 H (Λ) ≡ U (Λ)H U †(Λ) leads to







H (Λ)|ΨA
k (Λ)〉 = EA

k |ΨA
k (Λ)〉

|ΨA
k (Λ)〉 ≡ U (Λ) |ΨA

k 〉

2 Observable O(Λ) ≡ U (Λ)O U †(Λ) leads to 〈ΨA
k (Λ)|O(Λ)|ΨA

k (Λ)〉 = OA
k

3 Not transforming operator O defines a non-observable quantity as

∂Λ〈ΨA
k (Λ)|O|ΨA

k (Λ)〉 6= 0

Effective single-particle energies in correlated many-fermion systems
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Observable and non observable

Spectroscopic amplitudes are not observable [B. K. Jennings (2011), arXiv:1102.3721]

1 One-nucleon overlap functions are defined for any Λ through

U
p
k

(Λ) ≡ 〈ΨA+1
k (Λ)|a†

p|ΨA
0 (Λ)〉∗ ; V

p
k

(Λ) ≡ 〈ΨA-1
k (Λ)|ap|ΨA

0 (Λ)〉∗

as using U (Λ)a
†
p U †(Λ) =

∑

q
u

p
q a

†
q +

∑

qrs
u

p
qrsa

†
qa

†
r as + . . . would kill the purpose

2 Spectroscopic amplitudes vary under U (Λ) and are not observable

Effective single-particle energies in correlated many-fermion systems
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Scale dependence of ESPEs

Similarity renormalization group transformation H (s) ≡ U (s)HU †(s)

1 RG flow for operators and states

d

ds
O(s) ≡ [η(s),O(s)] where η(s) ≡

dU (s)

ds
U

†(s) = −η†(s)

d

ds
|ΨA

µ (s)〉 ≡ η(s)|ΨA
µ (s)〉

2 RG flow for the quantities of interest

d

ds
S

−pq
ν (s) = −〈ΨA

0 (s)|[η(s),a†
p]|ΨA-1

ν (s)〉 〈ΨA-1
ν (s)|aq|ΨA

0 (s)〉

−〈ΨA
0 (s)|a†

p|ΨA-1
ν (s)〉 〈ΨA-1

ν (s)|[η(s),aq ]|ΨA
0 (s)〉 6= 0

d

ds
E

−
ν (s) = 0

d

ds
M(0)

pq (s) = 0

d

ds
M(1)

pq (s) = −〈ΨA
0 (s)|{[[η(s),ap],H (s)],a†

q}|ΨA
0 (s)〉

−〈ΨA
0 (s)|{[ap,H (s)], [η(s),a†

q]}|ΨA
0 (s)〉 6= 0

Effective single-particle energies in correlated many-fermion systems
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Scale dependence of ESPEs in CC calculations
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e
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cent
One-neutron removal in 24O

■ E−
ν and ecent

p versus Λ

■ Λ ∈ [2.0;3.0] fm−1

Non-absoluteness of ESPEs

1 Scale dependence of E−
ν from omitted induced forces and clusters

2 Intrinsic scale dependence of ecent
p ≈ 6 MeV for Λ ∈ [2.0,3.0] fm−1

■ Not identical for all shells

3 Clean demonstration demands unitarily equivalent calculations

■ Requires to track (at least) 3N forces

■ NCSM and CCSD(T) calculations [T. D., K. Hebeler, G. Hagen, D. Furnstahl]

Effective single-particle energies in correlated many-fermion systems
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Non-absoluteness of ESPEs

Spectroscopic amplitudes are not observable [B. K. Jennings (2011), arXiv:1102.3721]

ESPEs (wave-functions, SFs, correlations. . . ) are not observable

Many-body observable
A

︸︷︷︸

{E
±

k
;σ±

k
} invariant underU(Λ)

≡
Single-particle component

B
︸︷︷︸

{ecent
p ;σs.p.

p }varies underU(Λ)

+/×
Correlations

C
︸︷︷︸

{∆E
p

k
;S±pp

k
}varies underU(Λ)

■ Solving (exactly) the Schr. equation with two unitarily equivalent H leads to

1 describing the exact same observables, e.g. {E±
k
,σ±

k
}

2 extracting two different single-particle shell structures {ecent
p }

■ Extracting the nucleon shell structure from {E±
k
,σ±

k
} is an illusory objective

■ One shell structure per (preferably low) resolution scale Λ

Effective single-particle energies in correlated many-fermion systems
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Non-absoluteness of ESPEs

Spectroscopic amplitudes are not observable [B. K. Jennings (2011), arXiv:1102.3721]

ESPEs (wave-functions, SFs, correlations. . . ) are not observable

Extract spectroscopic amplitudes [A. M. Mukhamedzhanov, A. S. Kadyrov, PRC82, 051601 (2010)]

■ Based on (Λ-dependent) factorization assumption = pure "direct" reaction

σ±
k (exp) ≡ S

±pp
k

(exp) × σs.p.
p (th)

■ Scale Λ only implicit in computation of σs.p.
p (th)

■ Compared to diagonal S
±pp
k

(th) from unrelated structure theory

■ Should ideally rely on consistent structure and reaction many-body theories

1 Define resolution scale Λ, i.e. specify H (Λ) used throughout

2 Validate σ±
k

(th) from many-body reaction theory against σ±
k

(exp)

3 Read off S
±pq
k

(Λ) from consistent many-body structure calculation

■ How complete {S
±pq
k

(Λ)}k∈HA±1
needs to be to safely reconstruct ecent

p (Λ)?
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Error on the reconstruction of ESPEs

Truncated Shell Model calculation in sd shell

1 V 2N = Chiral N3LO (Λχ =500 MeV) + U (Λ) down to Λ = 2.2 fm−1

2 Renormalization to (0d5/2,0d3/2,1s1/2) space through 2nd-order MBPT

3 e
160
p from spherical EDF calculation with Skxtb parameterization

Theoretical "experiment" [A. Signoracci, T. Duguet, unpublished]

1 Truncate Baranger sum rule

e
trunc
p ≡

trunc∑

k

(S+pp
k

E
+
k + S

−pp
k

E
−
k )/

trunc∑

k

(S+pp
k

+ S
−pp
k

)

where the truncation relates to

1 S
±pp
k

≥ S
p
trunc

2 E±
k

− E±
0 ≤ EExc

trunc

2 Compute error relative to full ecent
p
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Error on the reconstruction of ESPEs

Truncated Shell Model calculation in sd shell

1 V 2N = Chiral N3LO (Λχ =500 MeV) + U (Λ) down to Λ = 2.2 fm−1

2 Renormalization to (0d5/2,0d3/2,1s1/2) space through 2nd-order MBPT

3 e
160
p from spherical EDF calculation with Skxtb parameterization

Theoretical "experiment" [A. Signoracci, T. Duguet, unpublished]

1 Truncate Baranger sum rule

e
trunc
p ≡

trunc∑

k

(S+pp
k

E
+
k + S

−pp
k

E
−
k )/

trunc∑

k

(S+pp
k

+ S
−pp
k

)

where the truncation relates to

1 S
±pp
k

≥ S
p
trunc

2 E±
k

− E±
0 ≤ EExc

trunc

2 Compute error relative to full ecent
p
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Characterization of Oxygen isotopes
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[A. Signoracci, T. Duguet, unpublished]

20,22,24O isotopes

■ Evolution of neutron ESPEs

Isotope E2+
1

(th.) E2+
1

(exp.) SF
−/+
0 ∆eESPE

F Characterization
20O 1.87 1.67 0.58/0.34 0.00 Open-shell
22O 2.92 3.20 0.82/0.76 2.63 Closed-subshell
24O 4.78 4.72 0.89/0.92 4.74 Good closed-shell
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ESPE reconstruction in 24O
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24O [A. Signoracci, T. Duguet, unpublished]

Error from S
p
trunc

■ 0d5/2, 1s1/2 and 0d3/2 ESPEs

■ Number of included states

■ Missing strength

Using partial spectroscopic strength from one-neutron addition/removal

1 Error on each ESPE can go up to 600 keV

2 100 keV error requires S
p
trunc ∼ 10−2 ⇔∼ 95% of the strength ⇔∼ 4 states

3 Must access the main state from secondary channel (S±pp
k

≈ 2.10−2)

4 Similar in 20,22O but even more necessary to access secondary channel

■ Disclaimer: SM = very low scale theory = most favourable scenario
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ESPE shell gap in 24O
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Error from S
p
trunc

■ 0d3/2 − 1s1/2 Fermi gap

■ Number of included states

■ Missing strength

Using partial spectroscopic strength from one-neutron addition/removal

1 Error on shell gap can be of the order of 800 keV (20%)

2 Sub-leading fragment from primary channel worsen the result at first

3 Main fragments from secondary channel essential

■ Disclaimer: SM = very low scale theory = most favourable scenario
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ESPE shell gap in 22O
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Error from S
p
trunc

■ 1s1/2 − 0d5/2 Fermi gap

■ Number of included states

■ Missing strength

Using partial spectroscopic strength from one-neutron addition/removal

1 Error on shell gap can be of the order of 1.1 MeV (40%)

2 Trend different from 24O because secondary channel comes in earlier

3 Need to go down to S
p
trunc ∼ 2.10−2 to reach 10% error

■ Disclaimer: SM = very low scale theory = most favourable scenario

Effective single-particle energies in correlated many-fermion systems



Definition Non observability Errors Usefulness Conclusions

ESPE shell gap in 24O
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Error from S
p
trunc and EExc

trunc

■ 0d3/2 − 1s1/2 Fermi gap

■ Not monotonous in 2D plane

■ Targeted accuracy reached for

1 S
p
trunc ≤ 10−2

2 EExc
trunc ≈ 8 MeV

Error on ESPE reconstruction must be evaluated

■ In practice one (by far) never accesses complete enough reaction data

■ One does not simply ignore missing strength but relies on theory

■ One must propagate the error associated with the fact that

1 σ±
k

(th) 6= σ±
k

(exp) where data available

2 σ±
k

(th) is not validated where data unavailable
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Correlation between ESPEs and other observables

Partitioning of other observables

Outcome of Schr. equation
A

︸︷︷︸

E
2

+
1

≡
Ind. particle contribution

B
︸︷︷︸

∆eESPE
F

+
"The rest"

C
︸︷︷︸

∆Ecorr.

It is sometimes (often?) believed that

1 Correlations contribute minimally to E2+
1

in good closed-shell nuclei

2 The size of A reflects B, i.e.

■ A large E2+
1

reflects a large ∆eESPE
F

■ A low E2+
1

results from a small ∆eESPE
F igniting large correlations

Points of importance

1 This cannot be true in general as B and C can be changed at will

■ See [J. Holt et al., arXiv:1009.5984] for an interesting counter example

2 Revisit in which scheme (i.e. H (Λ), many-body method) this is true
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Systematic of spectral gap size and E
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Data sample

■ E+
0 − E−

0 and ∆eESPE
F versus E2+

1

■
22O and 48,52Ca

■ Λ ∈ [2.0;3.0] fm−1

■ All SF±
0 involved > 0.9

Pertinence of ESPE spectrum

1 Strong correlation between observable E+
0 − E−

0 and E2+
1

2 Weaker correlation between ∆eESPE
F and E2+

1

■ No strict causal relationship between both quantities

■ Connection likely to be stronger in restricted valence spaces

■ Dominance of pairing will accentuate this in open shell nuclei
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Take away messages

Single-particle shell structure in (correlated) nuclei

1 Unambiguously defined as eigenvalues of Baranger’s centroid matrix

2 Differs significantly from separation energies even in doubly magic nuclei

■ Absolute and relative values differ, ordering may also

■ Approximations add a layer of uncontrollable model dependence

3 Scale-dependent and non-observable

■ Changes with Λ while observables, i.e. E±
k

, σ±
k

or E2+
1

, do not

■ Correlation with observables rather weak and Λ dependent

4 Reconstruction from experimental cross sections

■ Requires consistent structure and reaction many-body theories

■ Secondary channel mandatory even for good closed-shell nuclei

■ Must evaluate error associated with missing data and imperfect theory

Manipulating the concept of single-particle shell structure is delicate
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Perspectives

Further studies

1 Systematic analysis within truncated shell model
[A. Signoracci, J. Holt, G. Hagen, T. Duguet, unpublished]

■ Variable valence space size

■ With/without 3N forces

2 Extension of Baranger scheme to particle-number breaking theories
[V. Somá, T. Duguet, C. Barbieri, PRC84 (2011) 064317]

■ Applied to ab-initio self-consistent Gorkov-Green’s function theory

■ Systematic access to ESPEs in open-shell nuclei

3 Energy density functional method

■ (SR) Koopman-like theorem with pairing [J. Sadoudi, T. Duguet, unpublished]

⇒ eigenvalues of hEDF ≡ ∂E/∂ρ are now centroids

■ (MR) ESPEs from sum rule [B. Bally, M. Bender, B. Avez, P.-H. Heenen]
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Thank you !
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Neutron shell structure evolution
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Doubly closed shell O isotopes

■ Neutron E±
k

versus ecent
p

■ Λ = 2.4 fm−1

(E+
µ ,E

−
ν ) and differ ecent

p from in "good-closed-shell" nuclei

■ Difference is not the same in various "good-closed-shell" nuclei

■ Difference diminishes strongly going away from N=Z

SM works with perfect closed-shell nucleus, i.e. ecore
p ≡ E+

µ δpk

■ Wrong but ok in view of large SF+
µ = good effective low-energy d.o.f.
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