Chiral three-body forces: From neutron matter to neutron stars

Kai Hebeler (OSU)

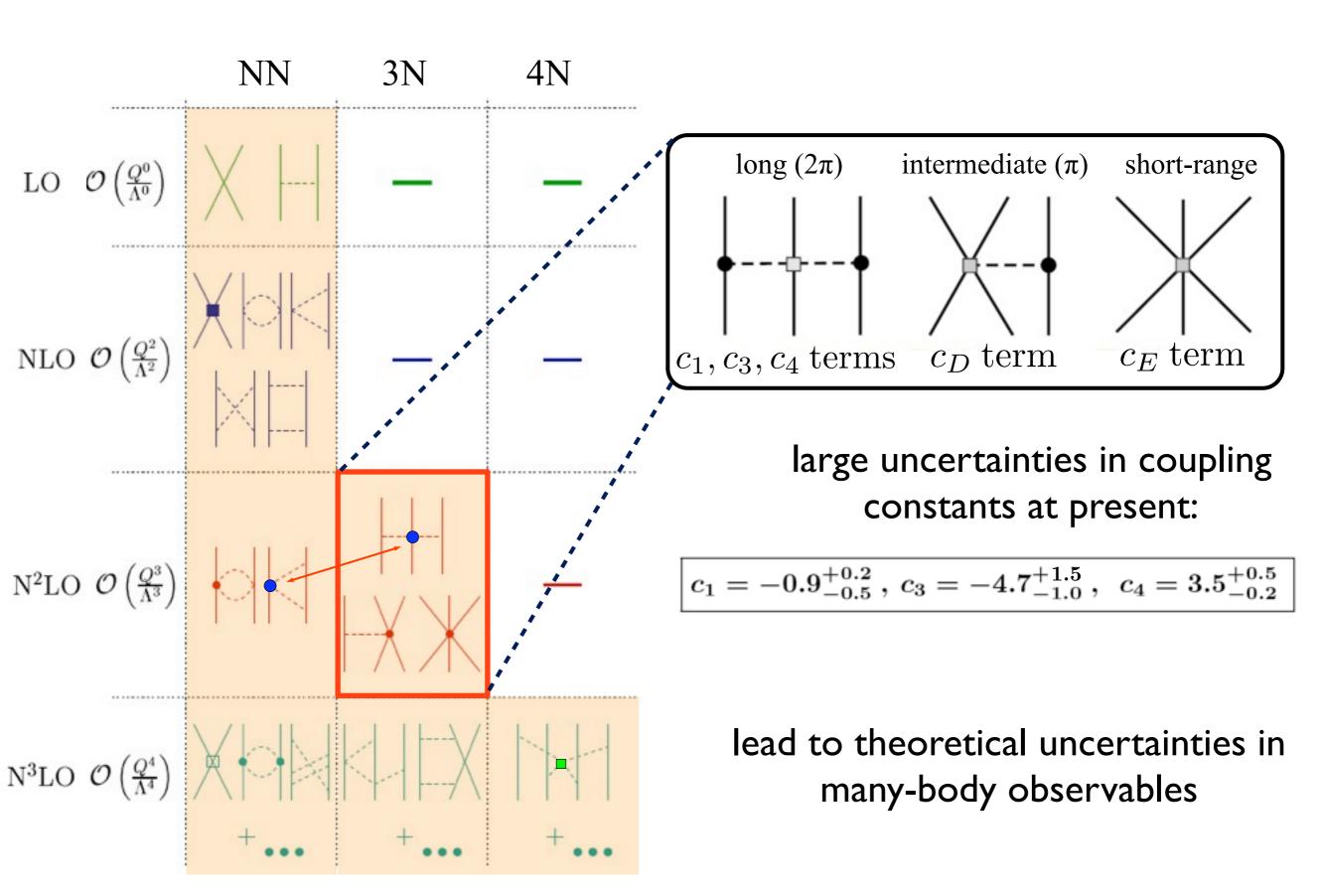
In collaboration with:

E. Anderson(OSU), S. Bogner (MSU), R. Furnstahl (OSU), J. Lattimer (Stony Brook), A. Nogga (Juelich), C. Pethick (Nordita), A. Schwenk (Darmstadt)

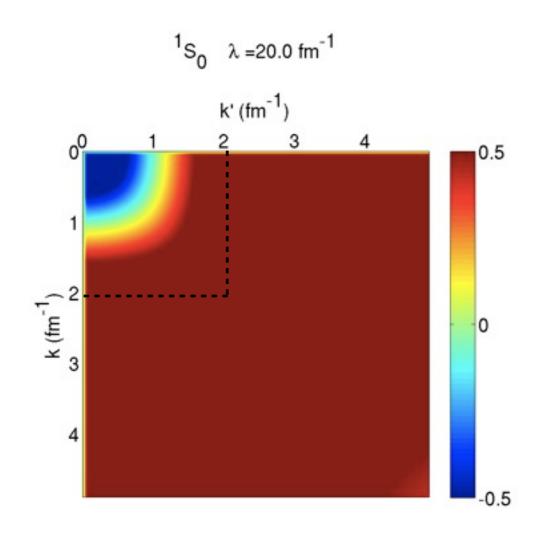
EMMI program The Extreme Matter Physics of Nuclei: From Universal Properties to Neutron-Rich Extremes

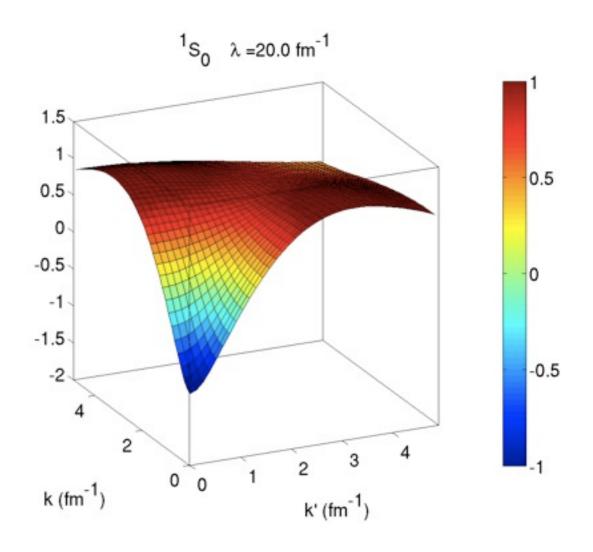
Darmstadt, April 20, 2012

Chiral EFT for nuclear forces, leading order 3N forces

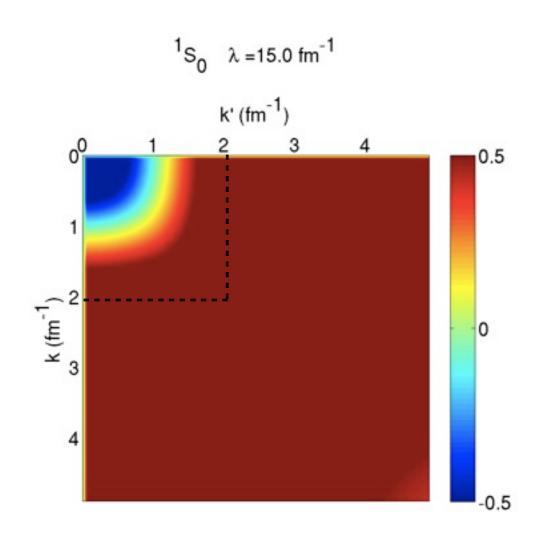


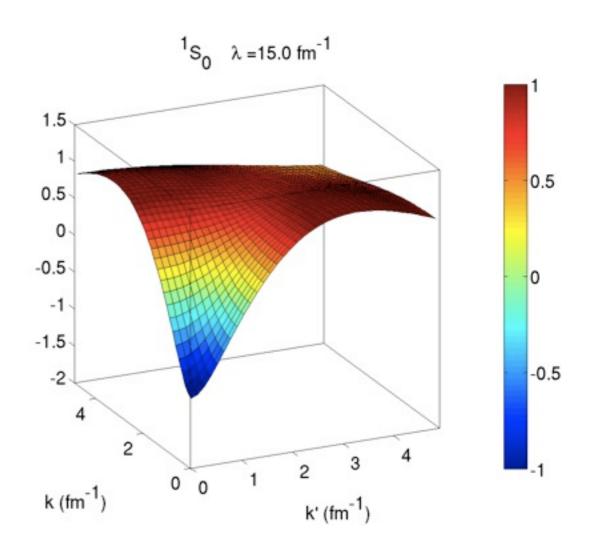
- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger \quad \text{with the resolution parameter } \lambda$
- basic idea: change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$



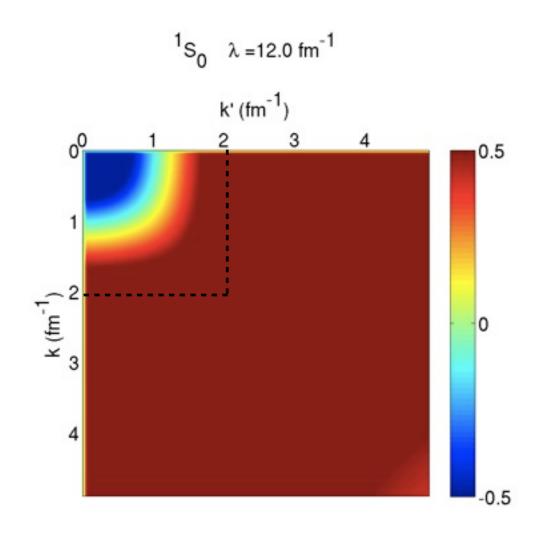


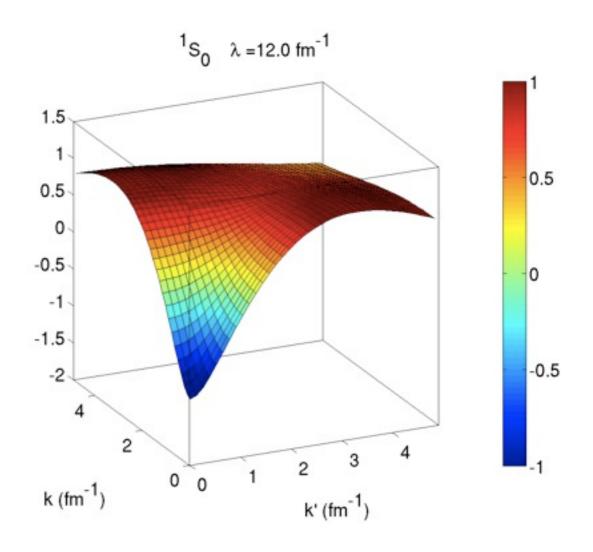
- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger \quad \text{with the resolution parameter } \lambda$
- basic idea: change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$



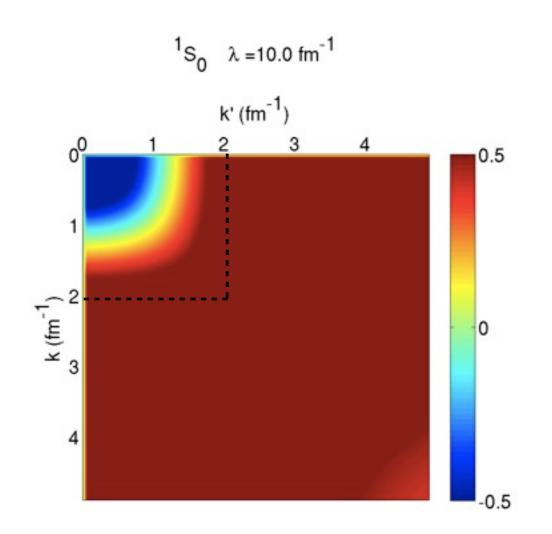


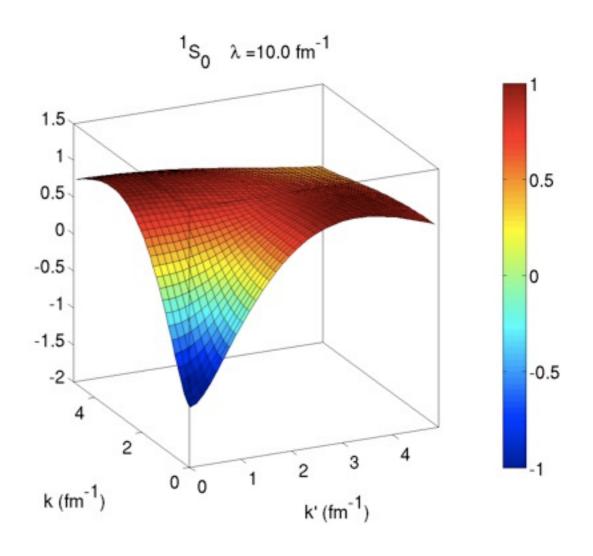
- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger \quad \text{with the resolution parameter } \lambda$
- basic idea: change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$



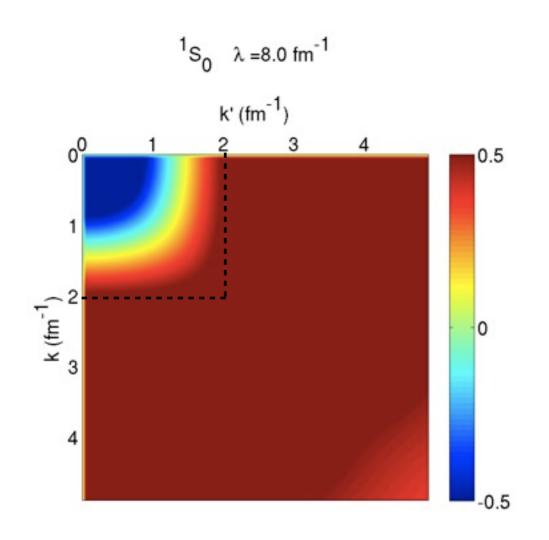


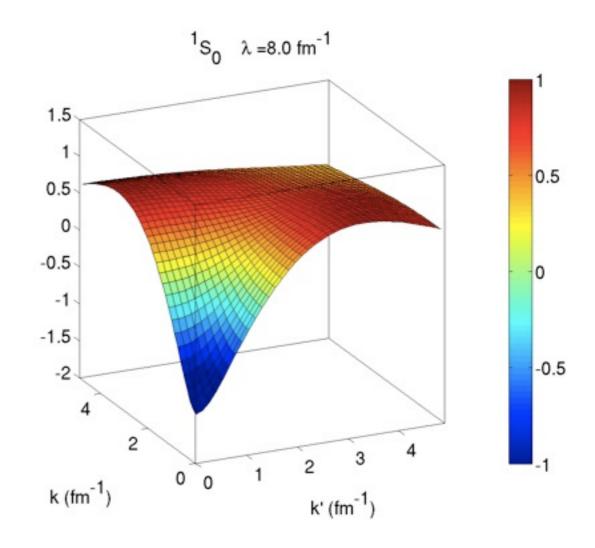
- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger \quad \text{with the resolution parameter } \lambda$
- basic idea: change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$



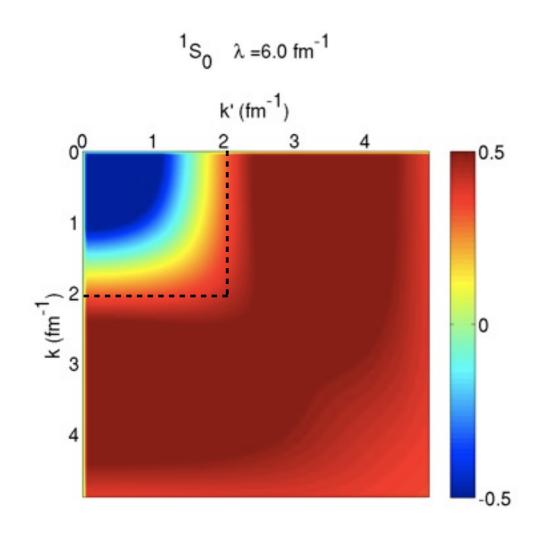


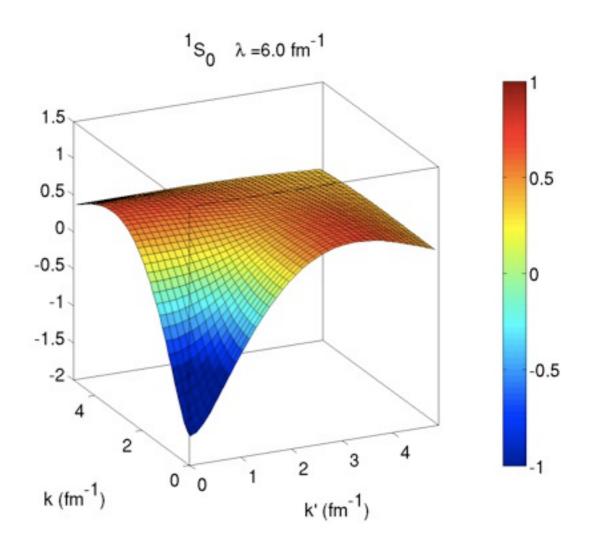
- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger \quad \text{with the resolution parameter } \lambda$
- basic idea: change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$



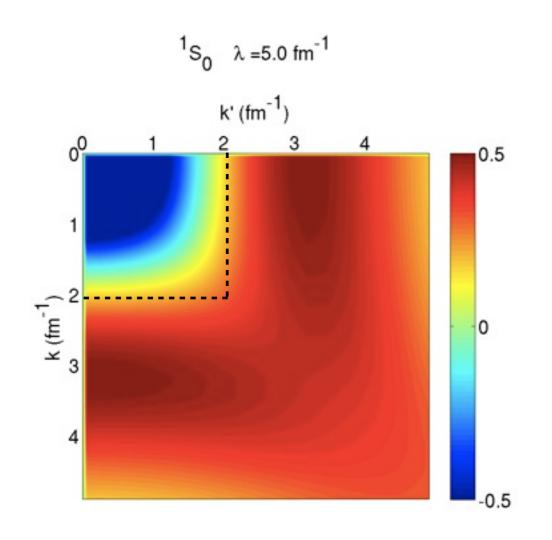


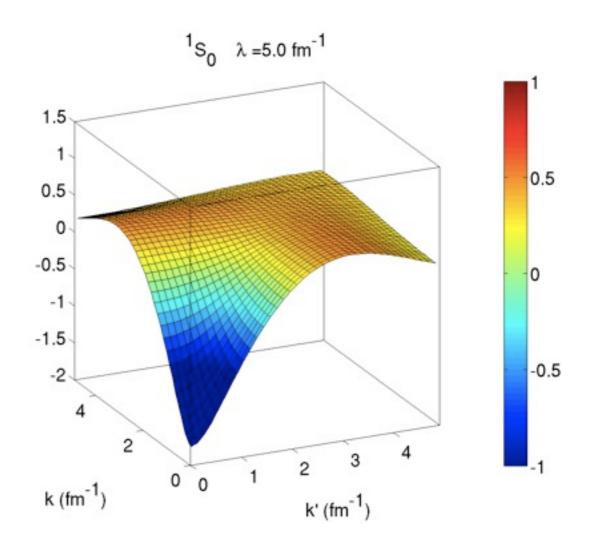
- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger \quad \text{with the resolution parameter } \lambda$
- basic idea: change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$



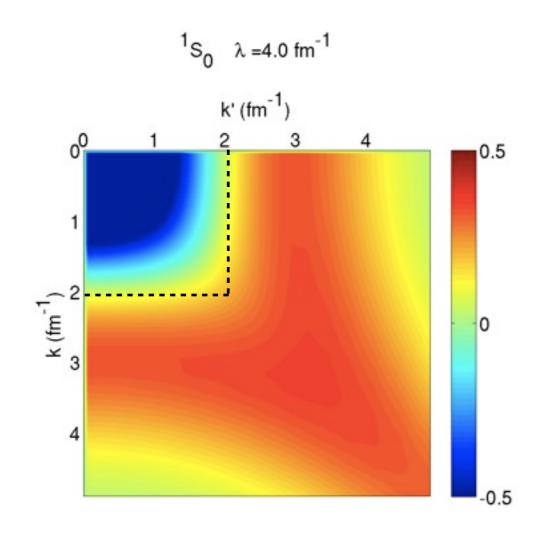


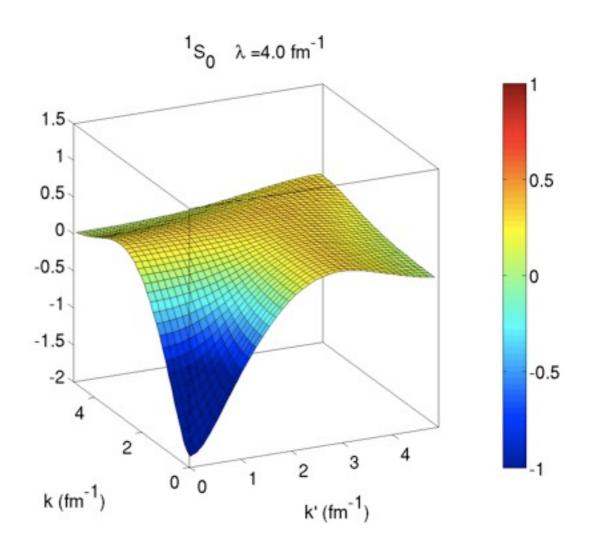
- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger \quad \text{with the resolution parameter } \lambda$
- basic idea: change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$



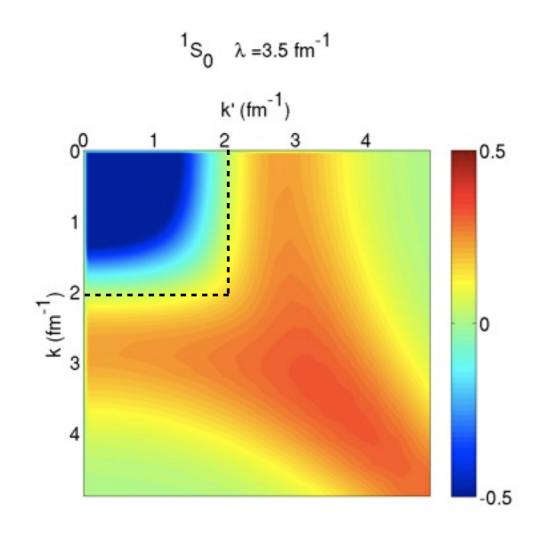


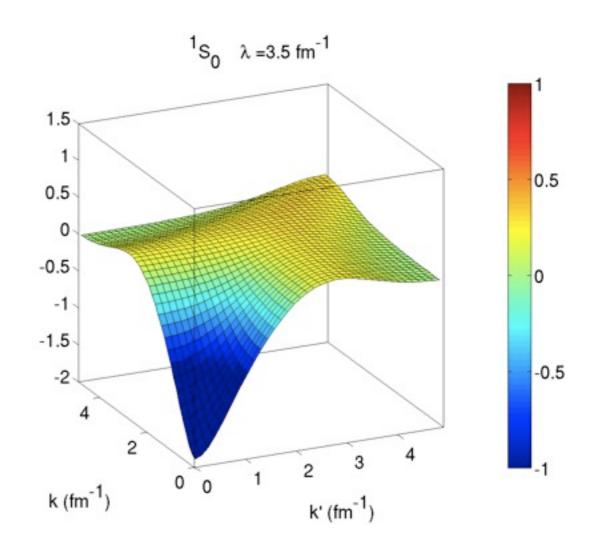
- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger \quad \text{with the resolution parameter } \lambda$
- basic idea: change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$



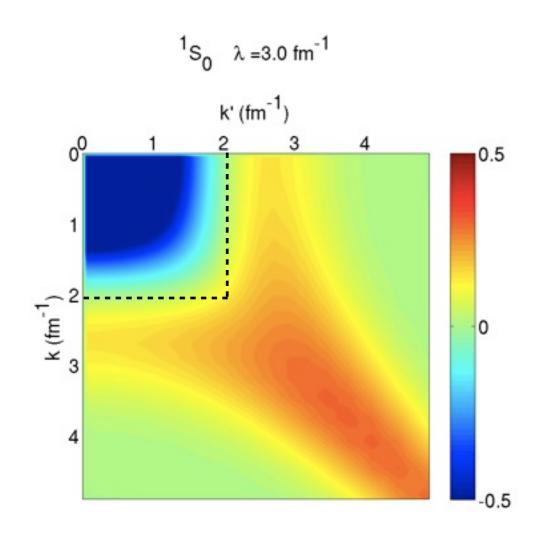


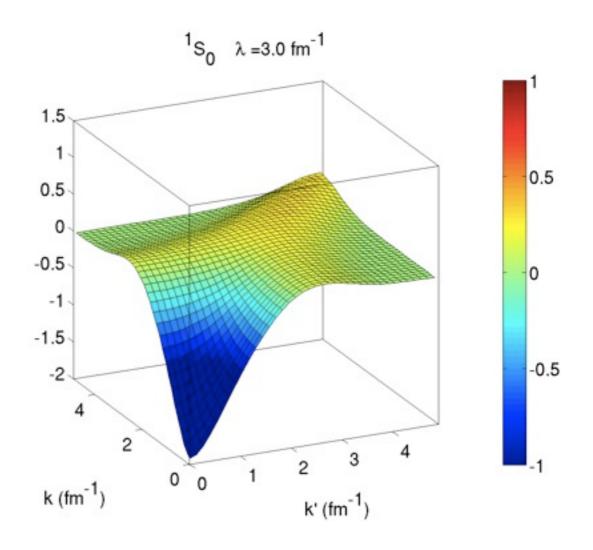
- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger \quad \text{with the resolution parameter } \lambda$
- basic idea: change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$



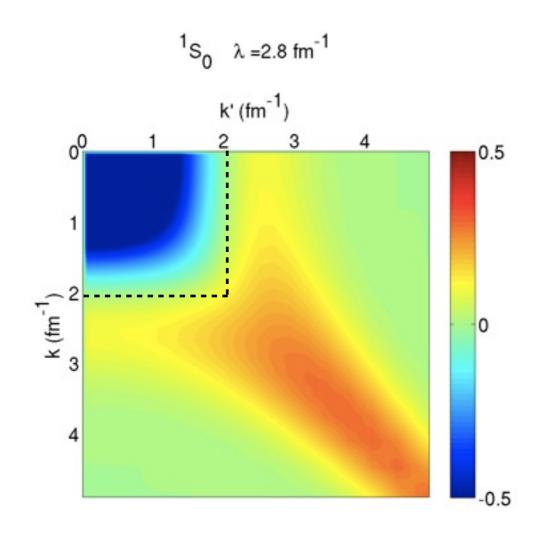


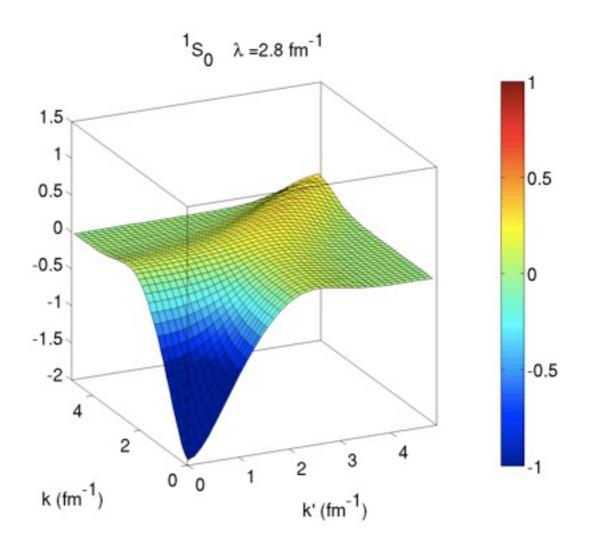
- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger \quad \text{with the resolution parameter } \lambda$
- basic idea: change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$



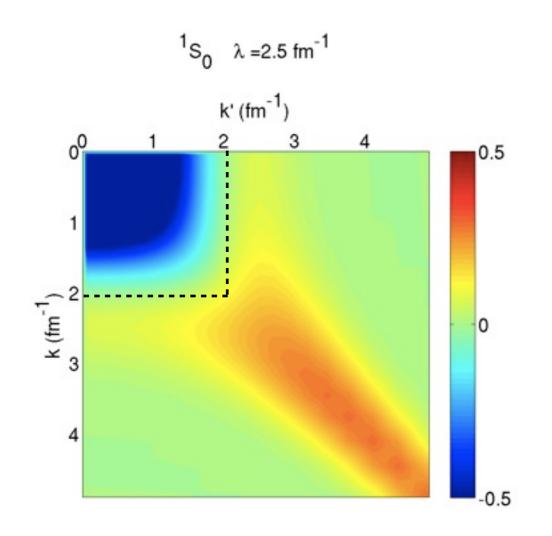


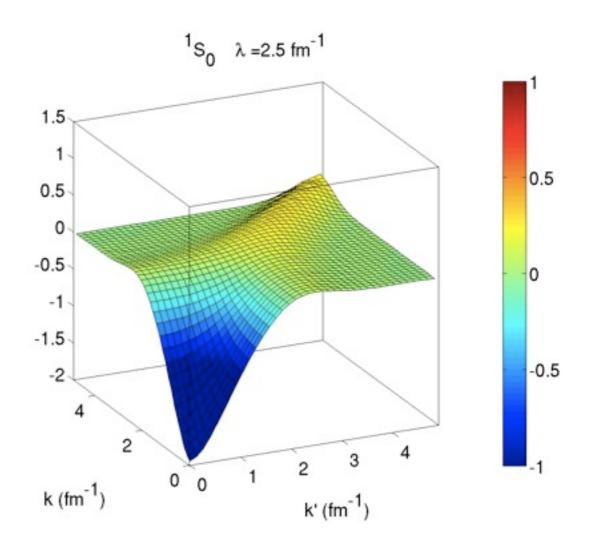
- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger \quad \text{with the resolution parameter } \lambda$
- basic idea: change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$



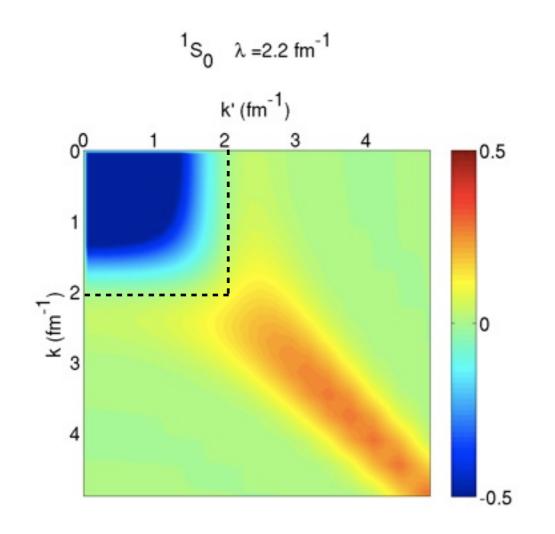


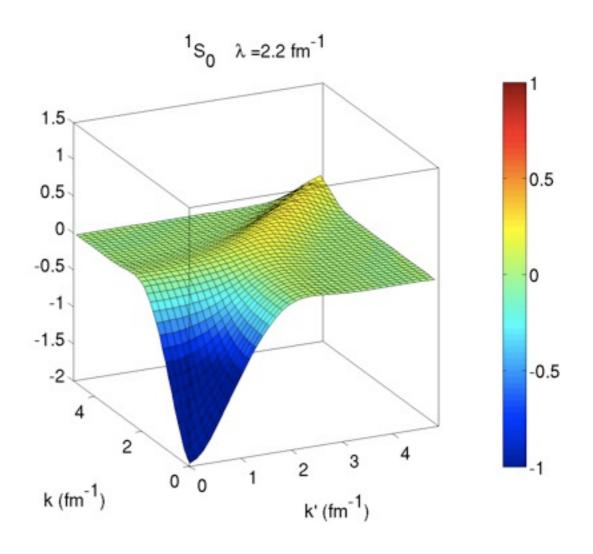
- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger \quad \text{with the resolution parameter } \lambda$
- basic idea: change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$



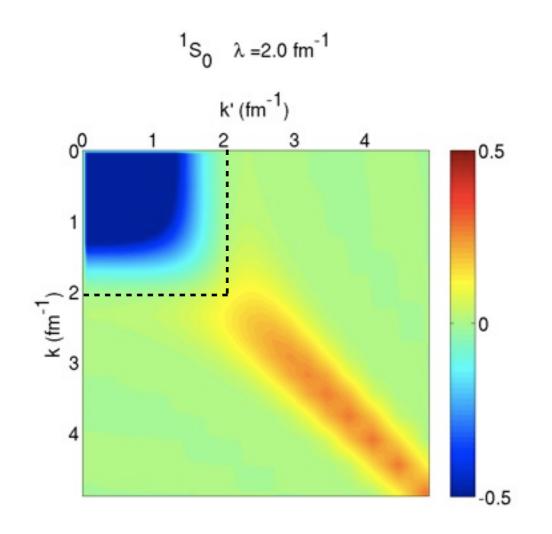


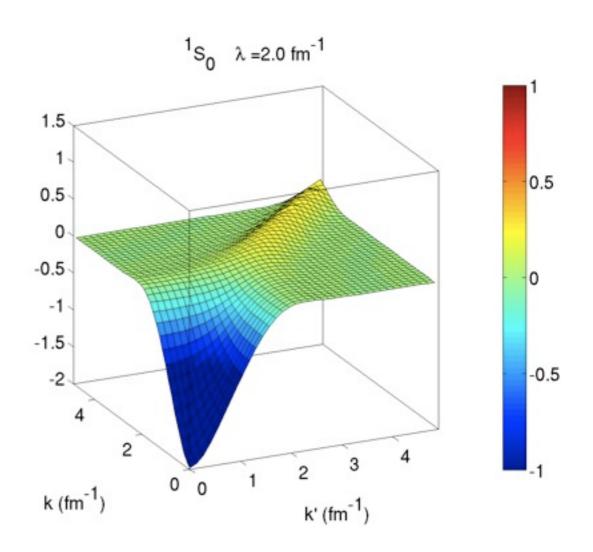
- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger \quad \text{with the resolution parameter } \lambda$
- basic idea: change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$



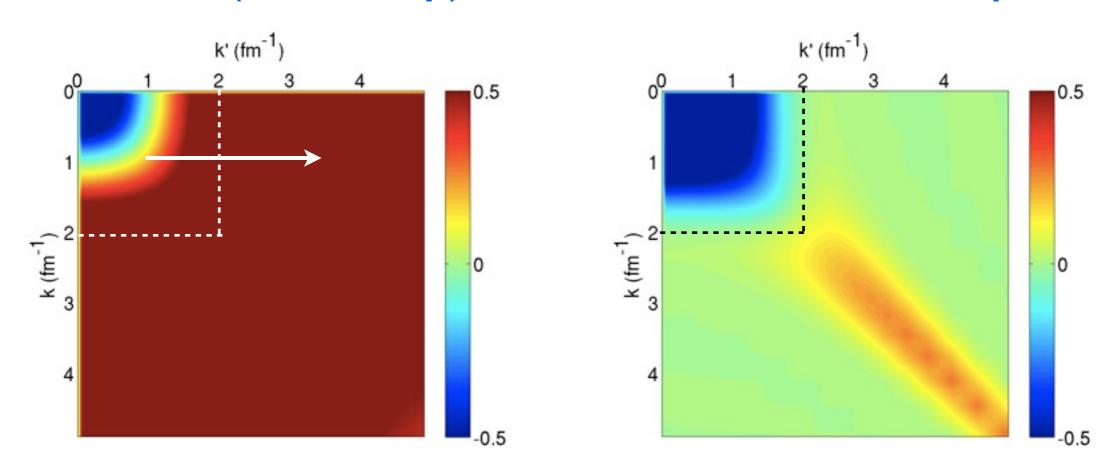


- goal: generate unitary transformation of "hard" Hamiltonian $H_\lambda = U_\lambda H U_\lambda^\dagger \quad \text{with the resolution parameter } \lambda$
- basic idea: change resolution in small steps: $\frac{dH_{\lambda}}{d\lambda} = [\eta_{\lambda}, H_{\lambda}]$





Changing the resolution: The (Similarity) Renormalization Group



- elimination of coupling between low- and high momentum components, calculations much easier
- observables unaffected by resolution change (for exact calculations)
- residual resolution dependences can be used as tool to test calculations

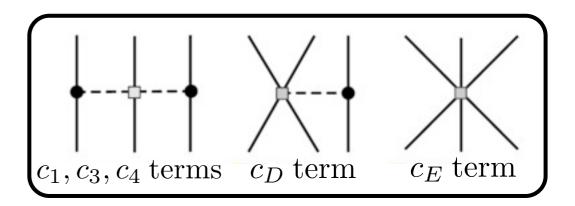
Not the full story:

RG transformation also changes three-body (and higher-body) interactions.

RG evolution of 3N interactions

• So far:

intermediate (c_D) and short-range (c_E) 3NF couplings fitted to few-body systems at different resolution scales:



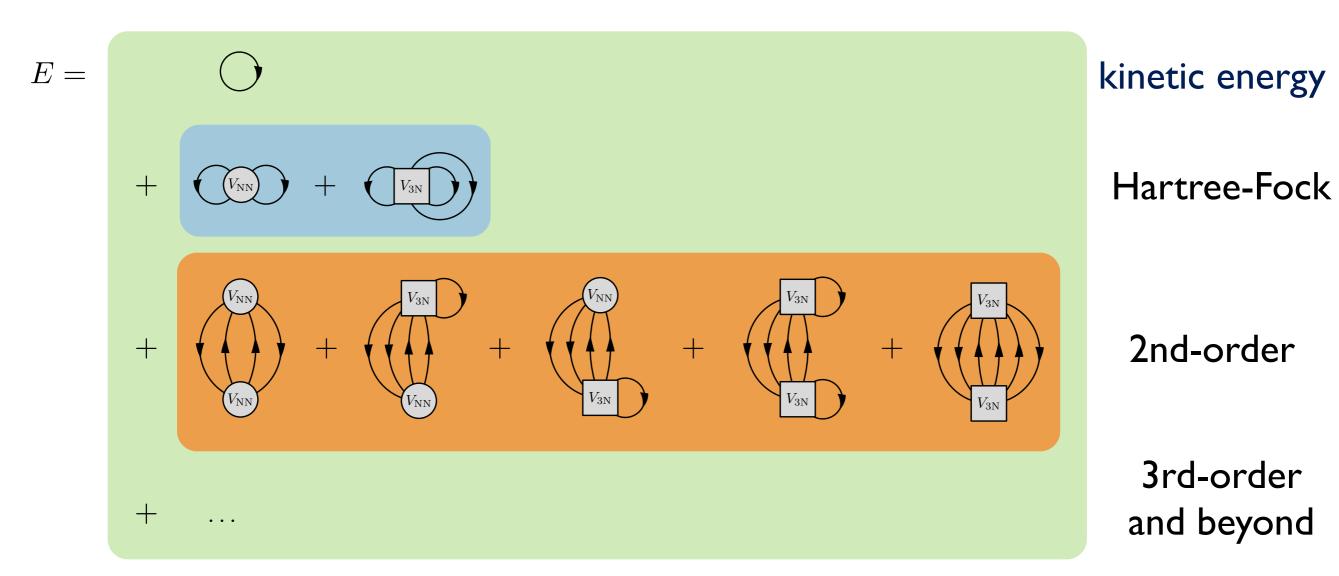
$$E_{^{3}\mathrm{H}} = -8.482\,\mathrm{MeV}$$
 and $r_{^{4}\mathrm{He}} = 1.95 - 1.96\,\mathrm{fm}$

- → coupling constants of natural size
- in neutron matter contributions from c_D , c_E and c_4 terms vanish
- ullet long-range $\,2\pi$ contributions assumed to be invariant under RG evolution
- Ideal case: evolve 3NF consistently with NN to lower resolution using the RG
 - has been achieved in oscillator basis (Jurgenson, Roth)
 - promising results in very light nuclei
 - problems in heavier nuclei
 - not suitable for infinite systems

Equation of state: Many-body perturbation theory

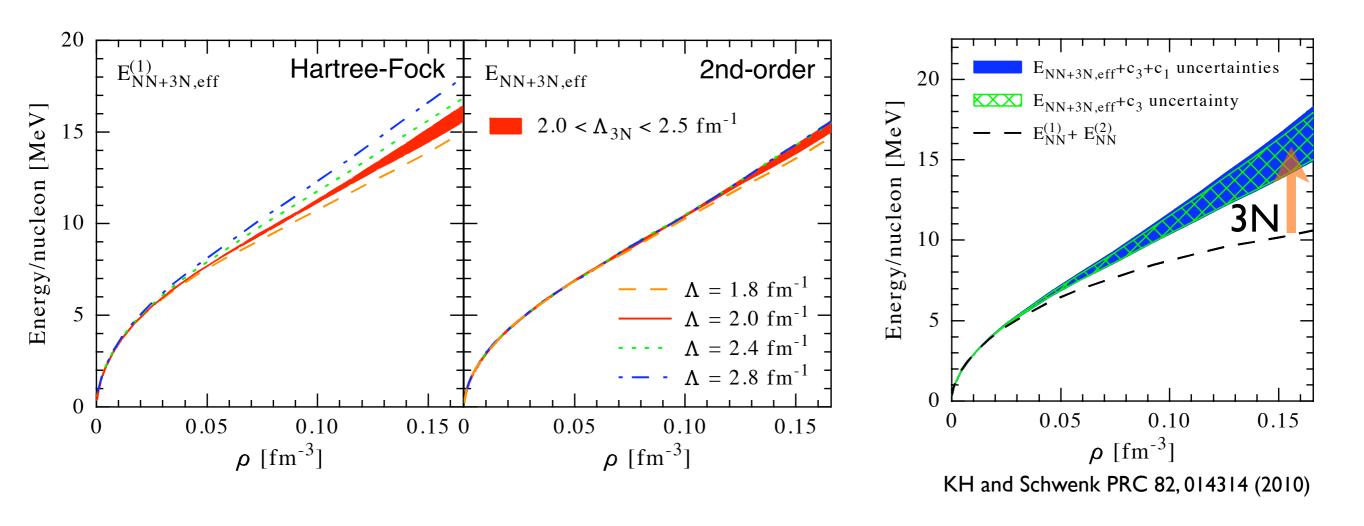
central quantity of interest: energy per particle $\,E/N\,$

$$H(\lambda) = T + V_{NN}(\lambda) + V_{3N}(\lambda) + \dots$$



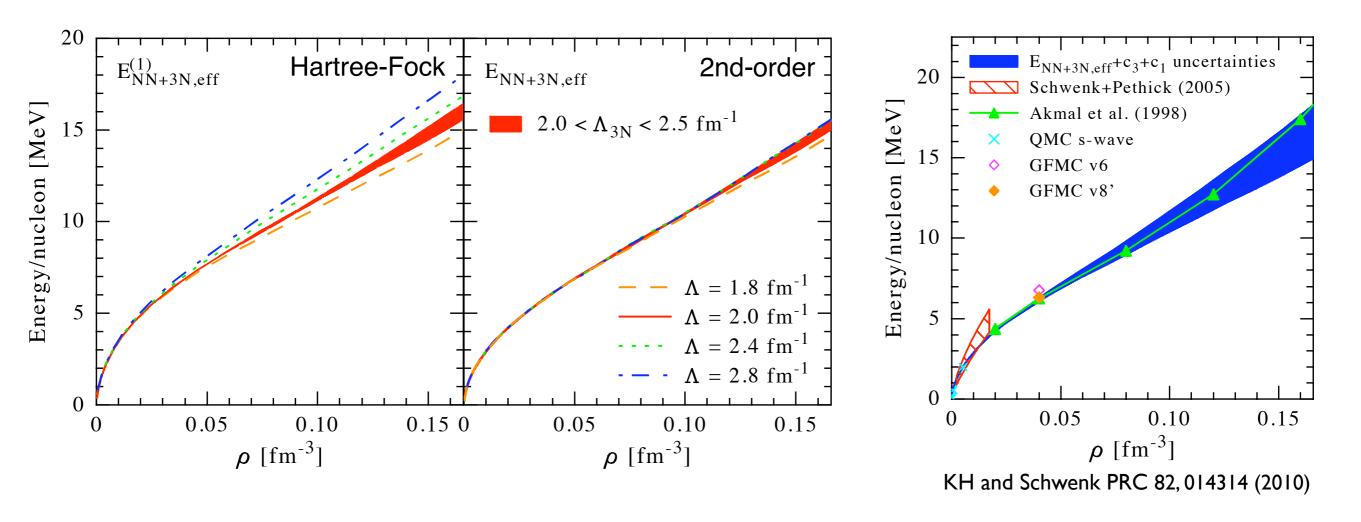
- "hard" interactions require non-perturbative summation of diagrams
- with low-resolution interactions much more perturbative
- inclusion of 3N interaction contributions crucial
- use chiral interactions as initial input for RG evolution

Equation of state of pure neutron matter



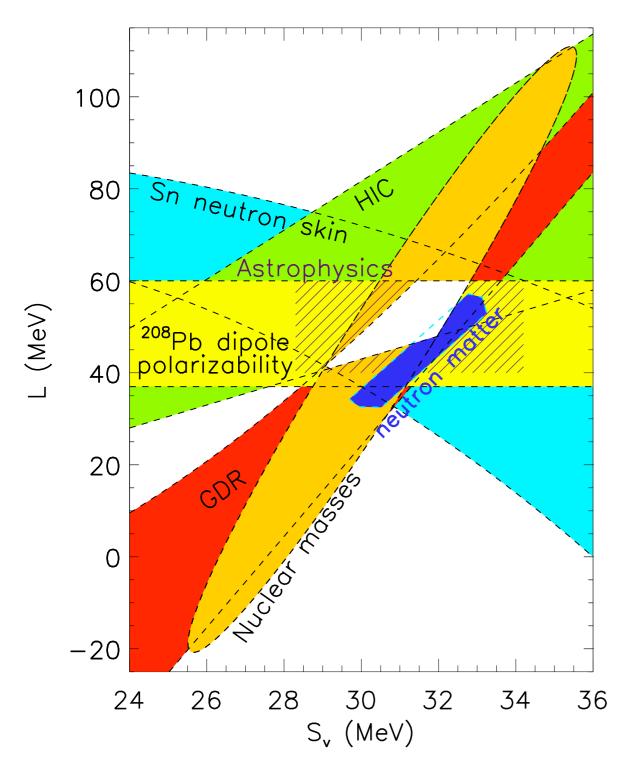
- significantly reduced cutoff dependence at 2nd order perturbation theory
- small resolution dependence indicates converged calculation
- energy sensitive to uncertainties in 3N interaction
- variation due to 3N input uncertainty much larger than resolution dependence

Equation of state of pure neutron matter



- significantly reduced cutoff dependence at 2nd order perturbation theory
- small resolution dependence indicates converged calculation
- energy sensitive to uncertainties in 3N interaction
- variation due to 3N input uncertainty much larger than resolution dependence
- good agreement with other approaches (different NN interactions)

Symmetry energy constraints



extend EOS to finite proton fractions \boldsymbol{x}

and extract symmetry energy parameters

$$S_v = \frac{\partial^2 E/N}{\partial^2 x} \Big|_{\rho = \rho_0, x = 1/2}$$

$$L = \frac{3}{8} \left. \frac{\partial^3 E/N}{\partial \rho \partial^2 x} \right|_{\rho = \rho_0, x = 1/2}$$

KH, Lattimer, Pethick and Schwenk, in preparation

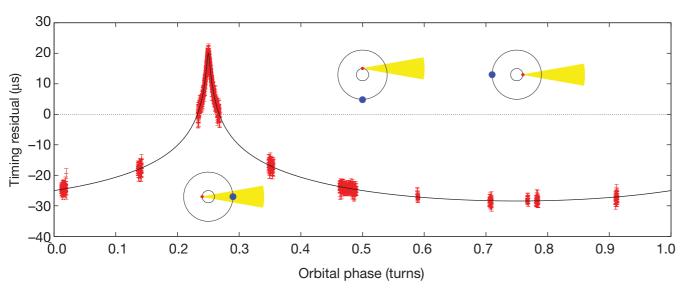
symmetry energy parameters consistent with other constraints

Constraints on the nuclear equation of state (EOS)

nature

A two-solar-mass neutron star measured using Shapiro delay

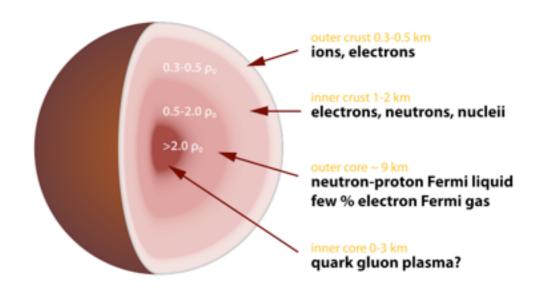
P. B. Demorest¹, T. Pennucci², S. M. Ransom¹, M. S. E. Roberts³ & J. W. T. Hessels^{4,5}



Demorest et al., Nature 467, 1081 (2010)

$$M_{\rm max} = 1.65 M_{\odot} \rightarrow 1.97 \pm 0.04 M_{\odot}$$

Calculation of neutron star properties requires EOS up to high densities.



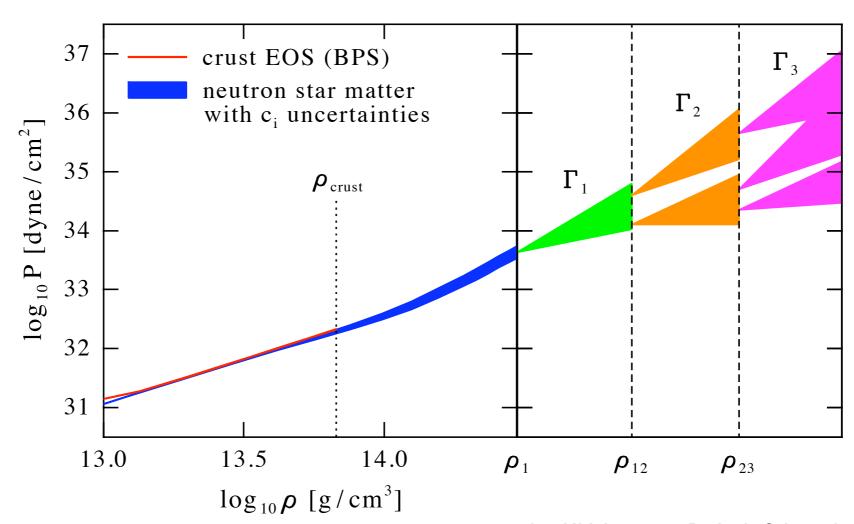
Strategy:

Use observations to constrain the high-density part of the nuclear EOS.

Neutron star radius constraints

incorporation of beta-equilibrium: neutron matter — neutron star matter parametrize piecewise high-density extensions of EOS:

- ullet use polytropic ansatz $\,p\sim
 ho^{\Gamma}$
- ullet range of parameters $\Gamma_1,
 ho_{12}, \Gamma_2,
 ho_{23}, \Gamma_3$ limited by physics!



see also KH, Lattimer, Pethick, Schwenk, PRL 105, 161102 (2010)

Constraints on the nuclear equation of state

use the constraints:

recent NS observation

$$M_{\rm max} > 1.97 \, M_{\odot}$$

causality

$$v_s(\rho) = \sqrt{dP/d\varepsilon} < c$$



significant reduction of possible equations of state

Constraints on the nuclear equation of state

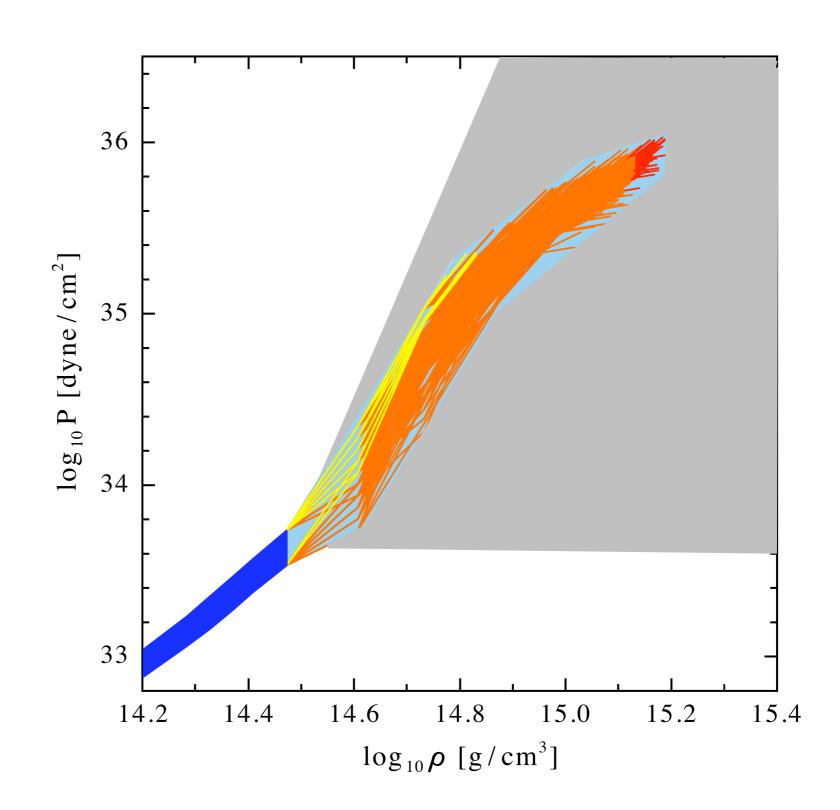
use the constraints:

NS mass

$$M_{\rm max} > 2.4 \, M_{\odot}$$

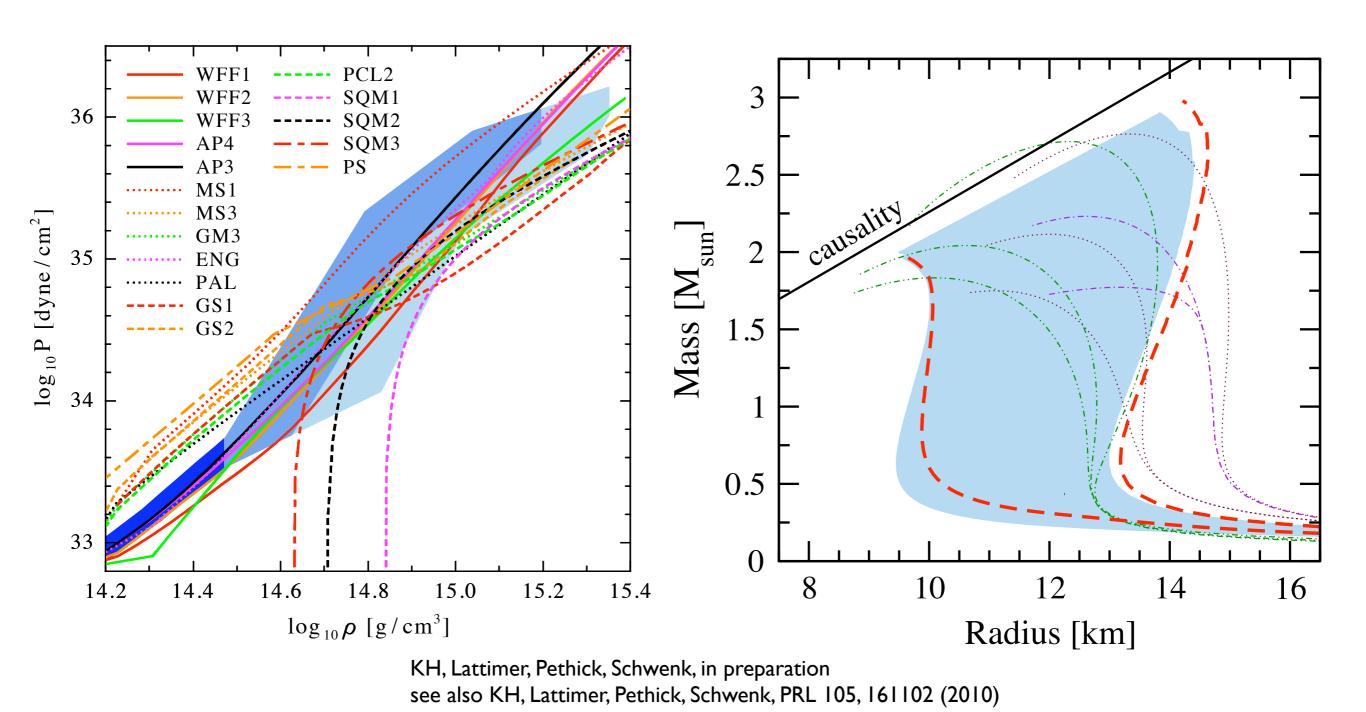
causality

$$v_s(\rho) = \sqrt{dP/d\varepsilon} < c$$



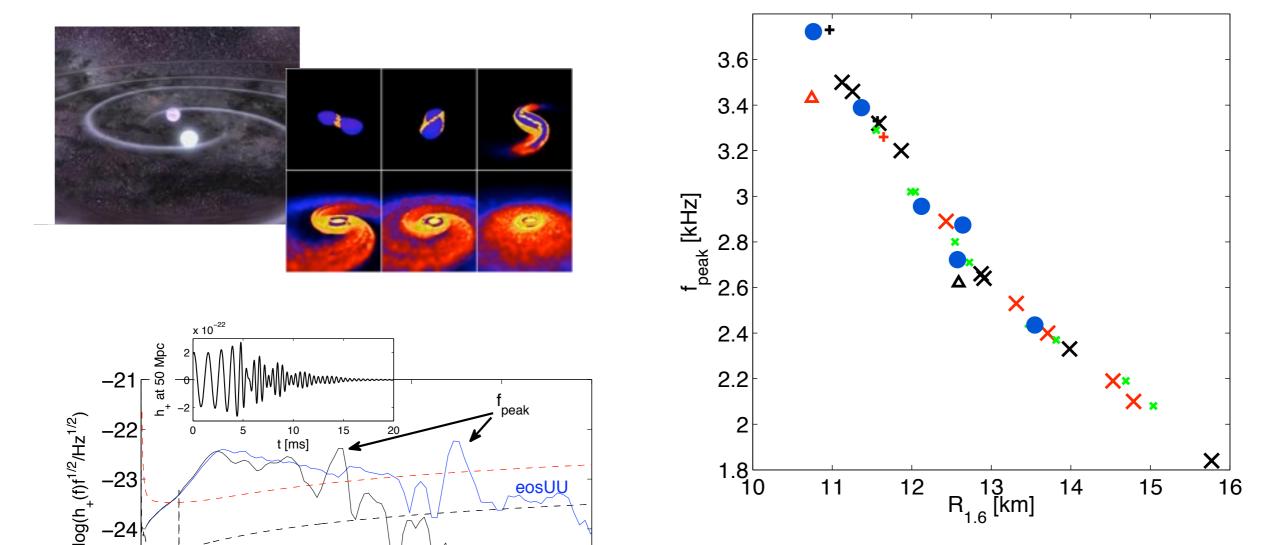
increased $M_{
m max}$ systematically leads to stronger constraints

Constraints on neutron star radii



- low-density part of EOS sets scale for allowed high-density extensions
- radius constraint for typical $1.4\,M_\odot$ neutron star: $9.8-13.4\,\mathrm{km}$

Gravitational wave signals from neutron star binary mergers



- -25<u></u>∟ Bauswein, Janka, KH, Schwenk arXiv:1204.1888 2 3 f [kHz]
- high-density part of nuclear EOS only loosely constrained

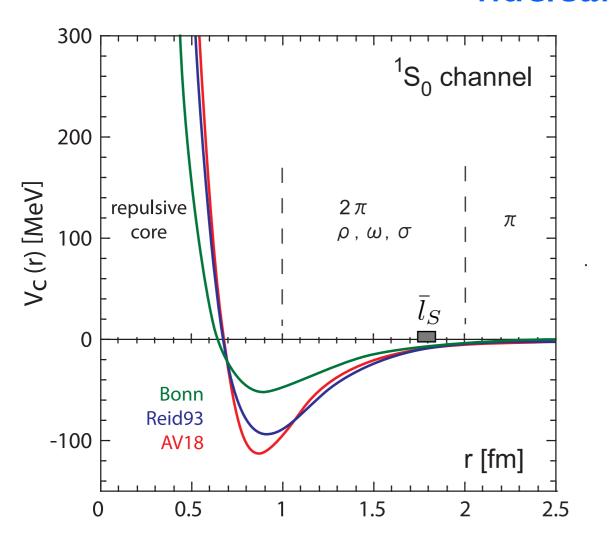
Shen

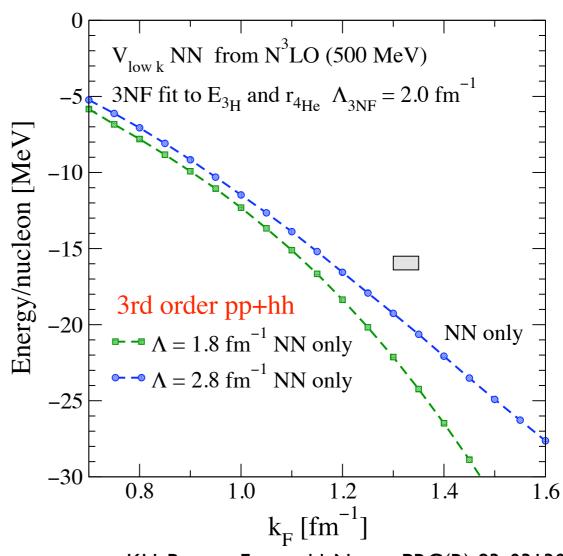
 simulations of NS binary mergers show strong correlation between between $f_{
m peak}$ of the GW spectrum and the raduis of a NS

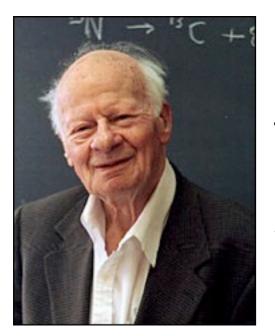
Bauswein and Janka PRL 108, 011101 (2012),

ullet measuring $f_{
m peak}$ is key step for constraining EOS systematically at large ho

Equation of state of symmetric nuclear matter, nuclear saturation







"Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high density. In particular, a substantial tensor force is required."

Hans Bethe (1971)

KH, Bogner, Furnstahl, Nogga, PRC(R) 83, 031301 (2011)

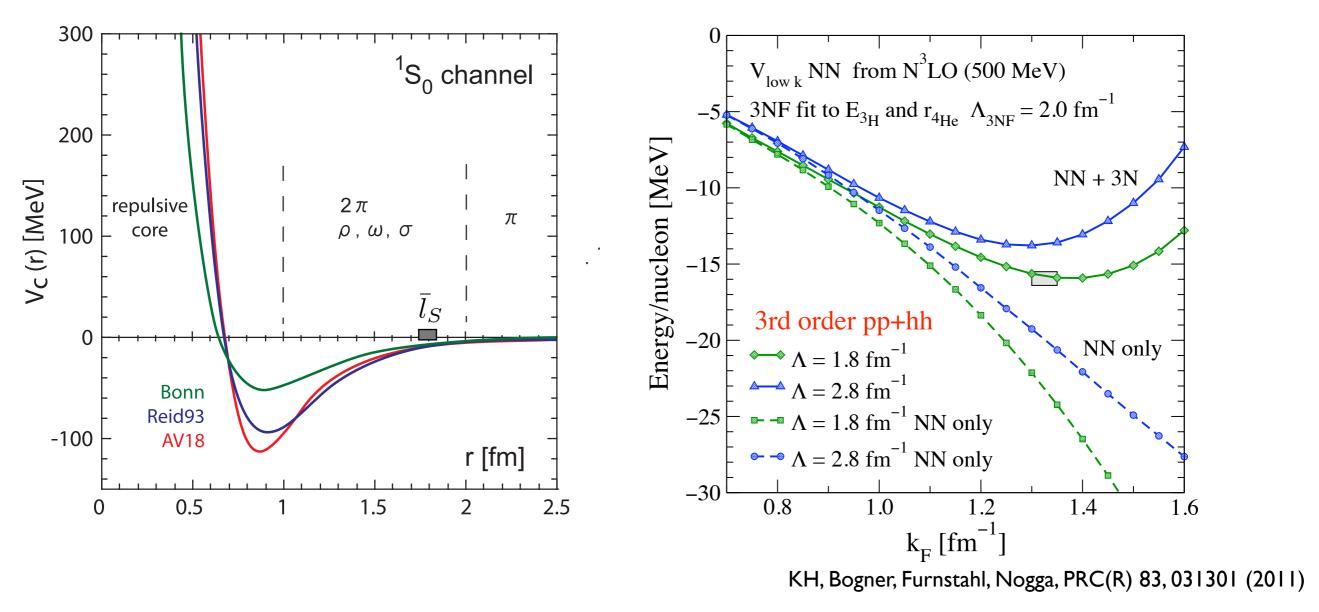
empirical nuclear saturation properties

$$n_S \sim 0.16 \, {\rm fm}^{-3}$$

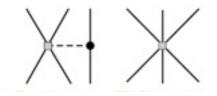
$$E_{\rm binding}/N \sim -16 \, {\rm MeV}$$

$$\bar{l}_S \sim 1.8 \text{ fm}$$

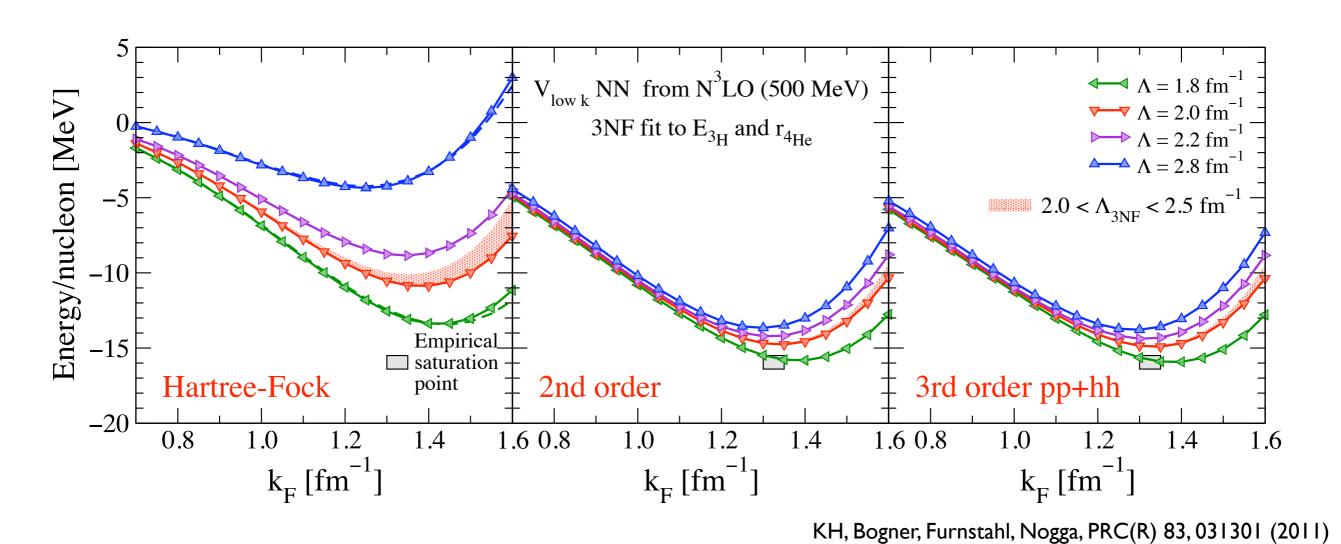
Equation of state of symmetric nuclear matter, Nuclear saturation



- nuclear saturation delicate due to cancellations of large kinetic and potential energy contributions
- ullet 3N forces are essential! 3N interactions fitted to 3H and 4He properties

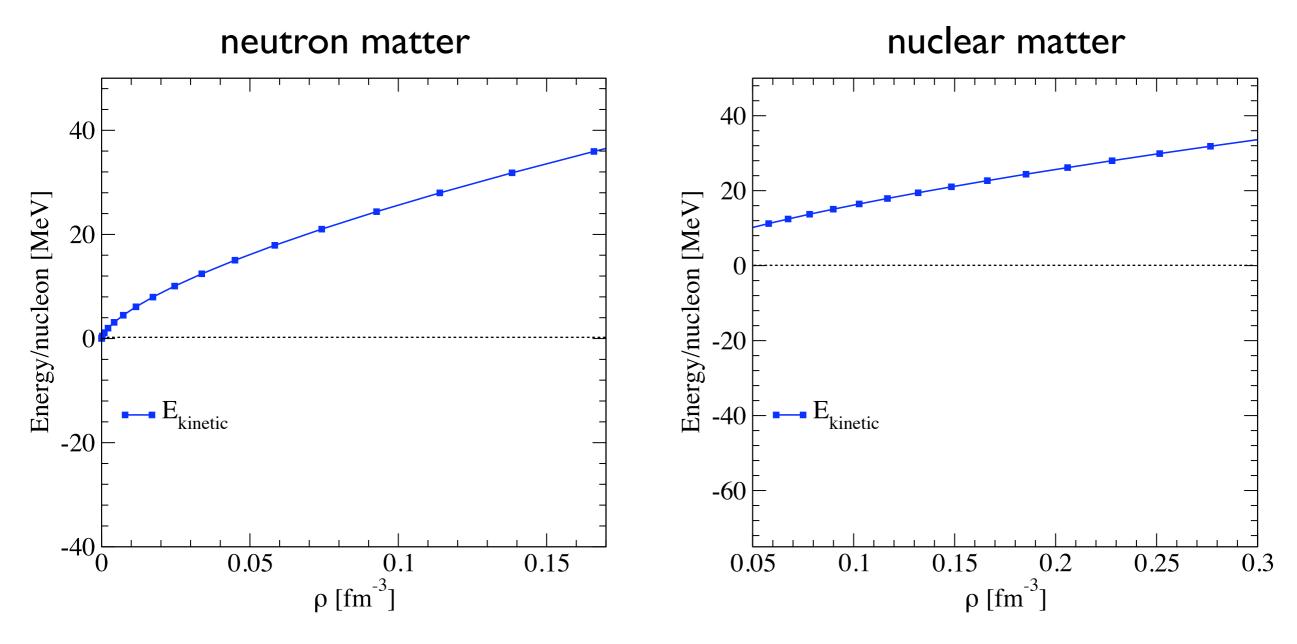


Equation of state of symmetric nuclear matter, Nuclear saturation



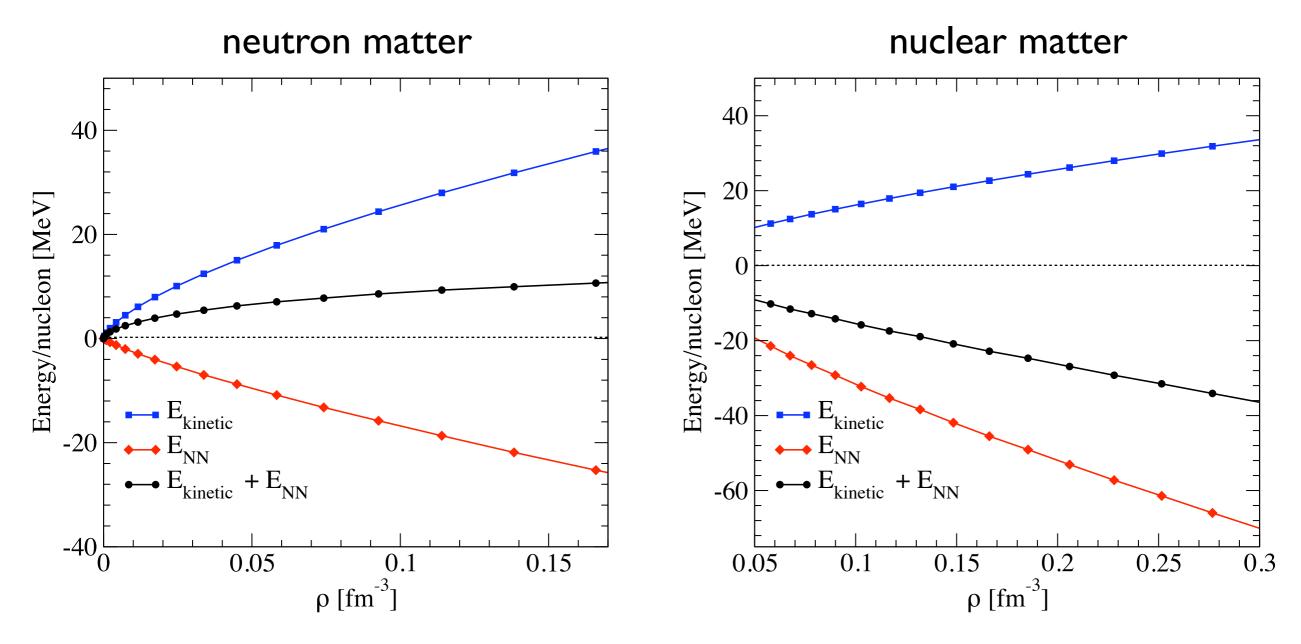
- saturation point consistent with experiment, without free parameters
- cutoff dependence at 2nd order significantly reduced
- 3rd order contributions small
- cutoff dependence consistent with expected size of 4N force contributions

Hierarchy of many-body contributions



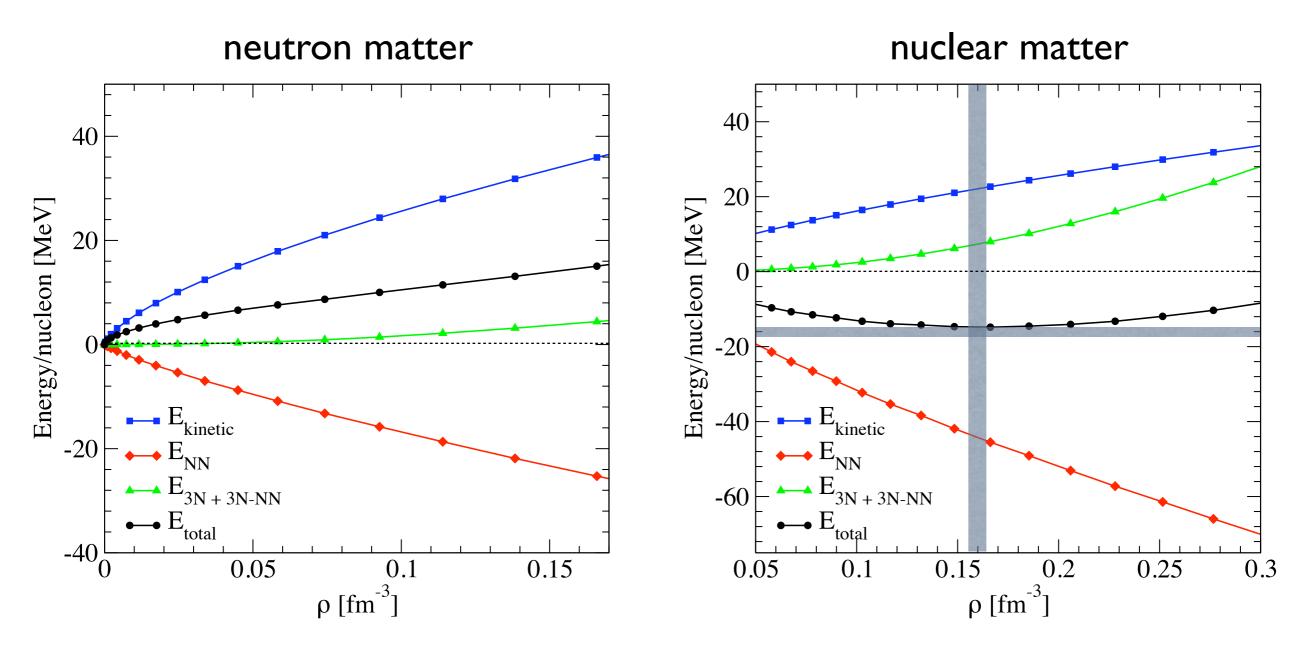
- binding energy results from cancellations of much larger kinetic and potential energy contributions
- chiral hierarchy of many-body terms preserved for considered density range
- ullet cutoff dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

Hierarchy of many-body contributions



- binding energy results from cancellations of much larger kinetic and potential energy contributions
- chiral hierarchy of many-body terms preserved for considered density range
- ullet cutoff dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

Hierarchy of many-body contributions

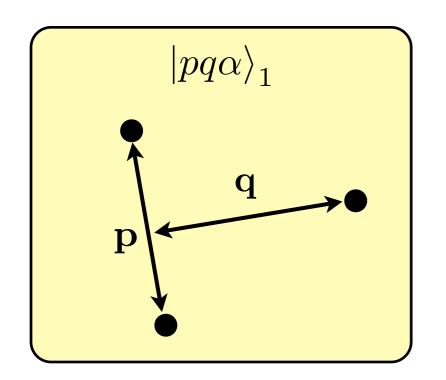


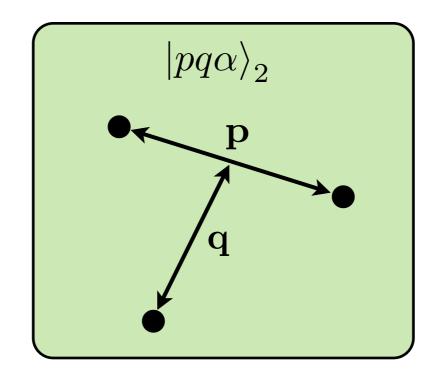
- binding energy results from cancellations of much larger kinetic and potential energy contributions
- chiral hierarchy of many-body terms preserved for considered density range
- ullet cutoff dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

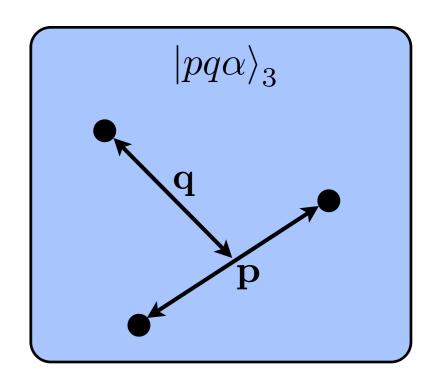
RG evolution of 3N interactions in momentum space

Three-body Faddeev basis:

$$|pq\alpha\rangle_i \equiv |p_iq_i; [(LS)J(ls_i)j] \mathcal{J}\mathcal{J}_z(Tt_i)\mathcal{T}\mathcal{T}_z\rangle$$







Faddeev bound state equations:

$$|\psi_i\rangle = G_0 \left[2t_i P + (1 + t_i G_0) V_{3N}^i (1 + 2P) \right] |\psi_i\rangle$$
$${}_i\langle pq\alpha|P|p'q'\alpha'\rangle_i = {}_i\langle pq\alpha|p'q'\alpha'\rangle_j$$

SRG flow equations of NN and 3N forces in Faddeev basis

$$\left(\begin{array}{c}
\frac{dH_s}{ds} = [\eta_s, H_s] & \eta_s = [T_{\text{rel}}, H_s]
\end{array}\right)$$

$$H = T + V_{12} + V_{13} + V_{23} + V_{123}$$

- ullet spectators correspond to delta functions, matrix representation of H_s ill-defined
- solution: explicit separation of NN and 3N flow equations

$$\frac{dV_{ij}}{ds} = [[T_{ij}, V_{ij}], T_{ij} + V_{ij}],$$

$$\frac{dV_{123}}{ds} = [[T_{12}, V_{12}], V_{13} + V_{23} + V_{123}]$$

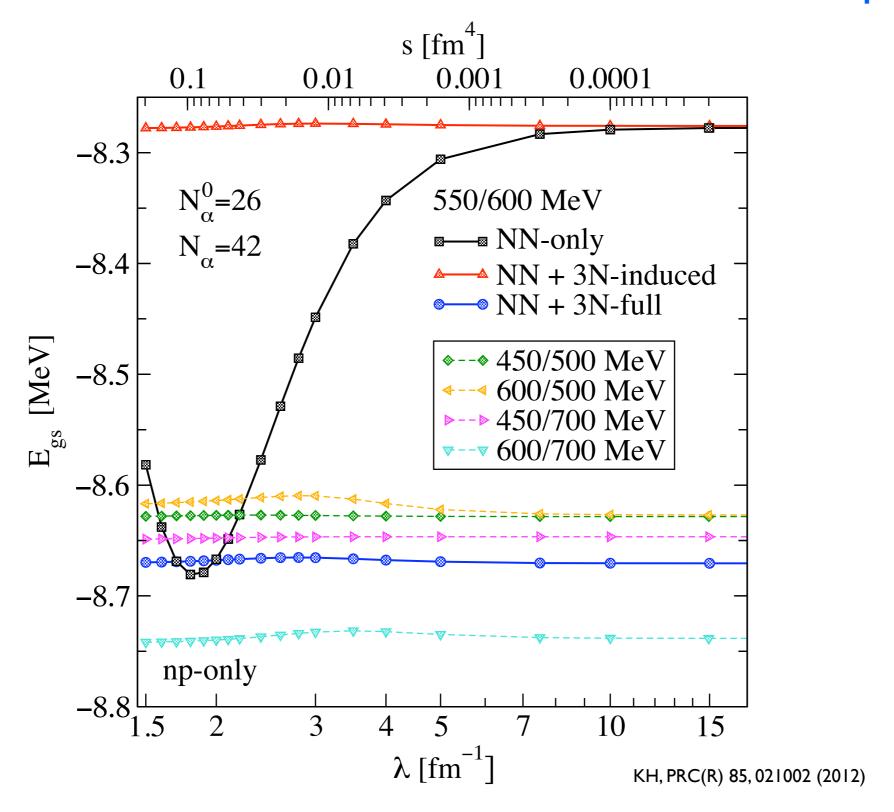
$$+ [[T_{13}, V_{13}], V_{12} + V_{23} + V_{123}]$$

$$+ [[T_{23}, V_{23}], V_{12} + V_{13} + V_{123}]$$

$$+ [[T_{rel}, V_{123}], H_s]$$

ullet only connected terms remain in $rac{dV_{123}}{ds}$,'dangerous' delta functions cancel

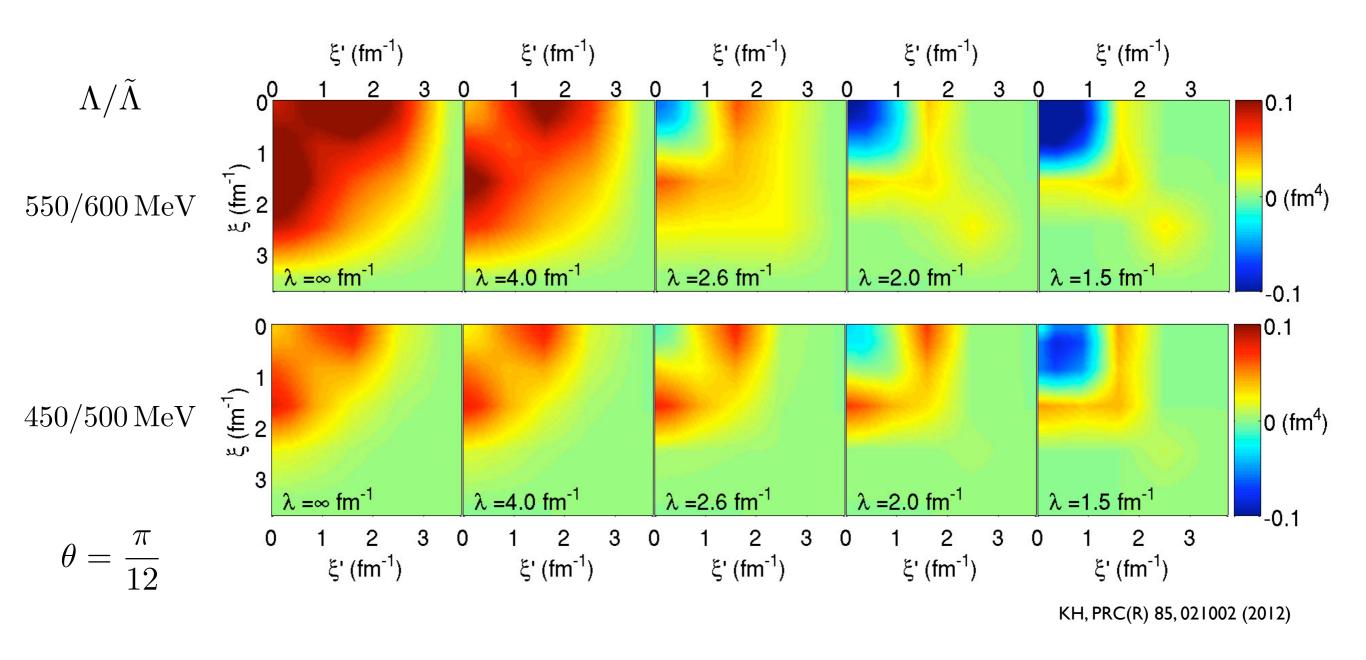
RG evolution of 3N interactions in momentum space



First implementation:

Invariance of $E_{
m gs}^{^3\!H}$ within $16\,{
m keV}$ for consistent chiral interactions at ${
m N}^2{
m LO}$

Decoupling of matrix elements

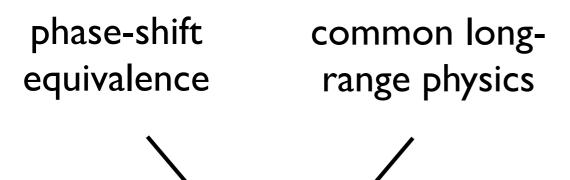


hyperradius:
$$\xi^2 = p^2 + \frac{3}{4}q^2$$

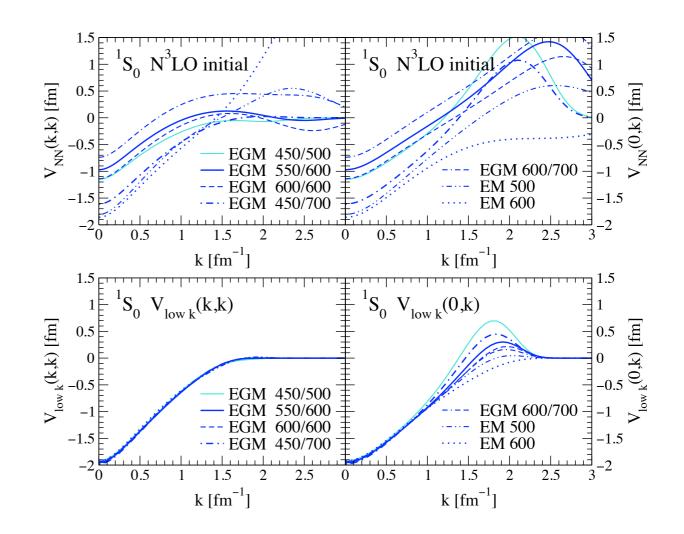
hyperangle: $\tan \theta = \frac{2 p}{\sqrt{3} q}$

same decoupling patterns like in NN interactions

Universality in 3N interactions at low resolution



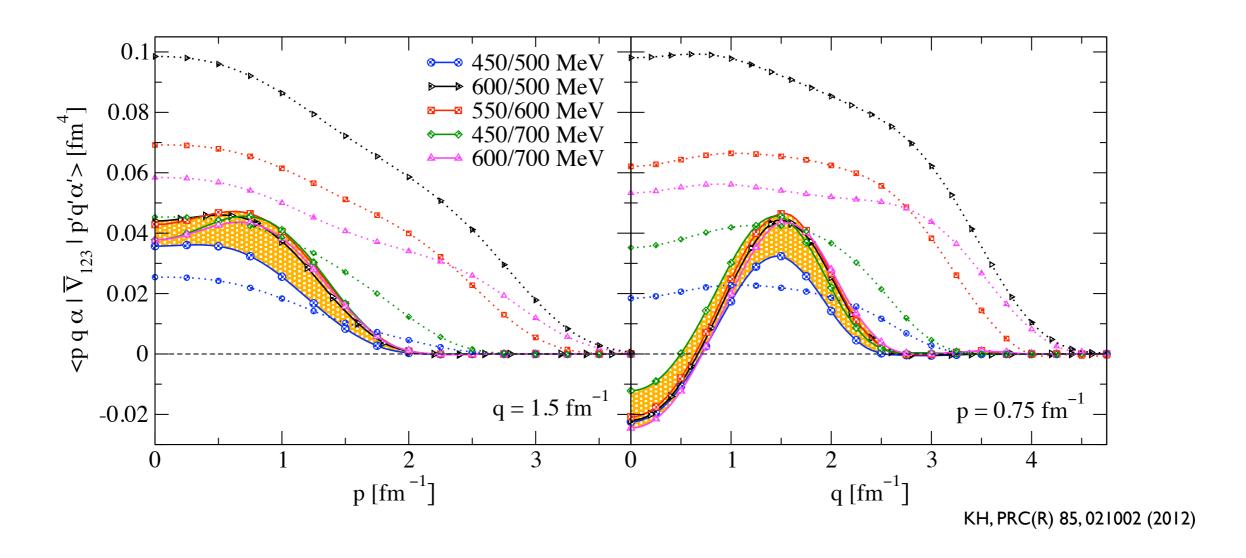
(approximate) universality of low-resolution NN interactions



To what extent are 3N interactions constrained at low resolution?

- ullet only two low-energy constants c_D and c_E
- 3N interactions give only subleading contributions to observables

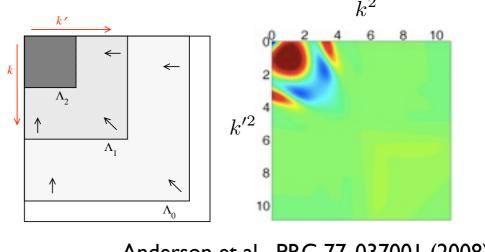
Universality in 3N interactions at low resolution



- ullet remarkably reduced model dependence for typical momenta $\sim 1\,\mathrm{fm}^{-1}$, matrix elements with significant phase space well constrained at low resolution
- new momentum structures induced at low resolution
- ullet study based on $\mathrm{N^2LO}$ chiral interactions, improved universality at $\mathrm{N^3LO}$?

Current/future directions

- application to infinite systems
 - equation of state
 - systematic study of induced many-body contributions
 - include initial N3LO 3N interactions (see also next talk!)
- transformation of evolved interactions to oscillator basis
 - application to finite nuclei, complimentary to HO evolution (no core shell model, coupled cluster)
- study of alternative generators
 - ▶ different decoupling patterns (e.g. V_{low k})
 - improved efficiency of evolution
 - suppression of many-body forces



Anderson et al., PRC 77, 037001 (2008)

- explicit calculation of unitary 3N transformation
 - ▶ RG evolution of operators
 - study of correlations in nuclear systems

Summary

- low-resolution interactions allow simpler calculations for nuclear systems
- observables invariant under resolution changes, interpretation of results can change!
- chiral EFT provides systematic framework for constructing nuclear Hamiltonians
- 3N interactions are essential at low resolution
- nucleonic matter equation of state based on low-resolution interactions consistent with empirical constraints
- constraints for the nuclear equation of state and structure of neutron stars

Outlook

- RG evolution of three-nucleon interactions: microscopic study of light nuclei and nucleonic matter using chiral nuclear interactions at low resolution
- RG evolution of operators: nuclear scaling and correlations in nuclear systems