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• elimination of coupling between low- and high momentum components,
calculations much easier

• observables unaffected by resolution change (for exact calculations)

• residual resolution dependences can be used as tool to test calculations

Not the full story:
RG transformation also changes three-body (and higher-body) interactions.

Changing the resolution: 
The (Similarity) Renormalization Group



RG evolution of 3N interactions

c1, c3, c4 terms cD term cE term

• So far: 
intermediate (cD) and short-range 
(cE) 3NF couplings fitted to few-body 
systems at different resolution scales: 

E3H = −8.482 MeV r4He = 1.95− 1.96 fmand

• Ideal case: evolve 3NF consistently with NN to lower resolution using the RG

• has been achieved in oscillator basis (Jurgenson, Roth)

• promising results in very light nuclei 

• problems in heavier nuclei

• not suitable for infinite systems

coupling constants of natural size

• in neutron matter contributions from      ,       and     terms vanishcD cE c4

• long-range       contributions assumed to be invariant under RG evolution 2π
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Equation of state: Many-body perturbation theory

E =

+ +

+ +

central quantity of interest: energy per particle E/N

• “hard” interactions require non-perturbative summation of diagrams

• with low-resolution interactions much more perturbative

• inclusion of 3N interaction contributions crucial

• use chiral interactions as initial input for RG evolution 
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2nd-order

Hartree-Fock

kinetic energy

3rd-order 
and beyond

H(λ) = T + VNN(λ) + V3N(λ) + ...



• significantly reduced cutoff dependence at 2nd order perturbation theory

• small resolution dependence indicates converged calculation

• energy sensitive to uncertainties in 3N interaction

• variation due to 3N input uncertainty much larger than resolution dependence

Equation of state of pure neutron matter
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Symmetry energy constraints

symmetry energy parameters consistent with other constraints 

Sv =
∂2E/N

∂2x

∣∣∣∣
ρ=ρ0,x=1/2

L =
3
8

∂3E/N

∂ρ∂2x
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ρ=ρ0,x=1/2

KH, Lattimer, Pethick and Schwenk, in preparation

extend EOS to finite proton fractions   x

and extract symmetry energy parameters



Constraints on the nuclear equation of state (EOS)
LETTER

doi:10.1038/nature09466

A two-solar-mass neutron star measured using
Shapiro delay
P. B. Demorest1, T. Pennucci2, S. M. Ransom1, M. S. E. Roberts3 & J. W. T. Hessels4,5

Neutron stars are composed of the densest form of matter known
to exist in our Universe, the composition and properties of which
are still theoretically uncertain. Measurements of the masses or
radii of these objects can strongly constrain the neutron starmatter
equation of state and rule out theoretical models of their composi-
tion1,2. The observed range of neutron star masses, however, has
hitherto been too narrow to rule out many predictions of ‘exotic’
non-nucleonic components3–6. The Shapiro delay is a general-relat-
ivistic increase in light travel time through the curved space-time
near a massive body7. For highly inclined (nearly edge-on) binary
millisecond radio pulsar systems, this effect allows us to infer the
masses of both the neutron star and its binary companion to high
precision8,9. Here we present radio timing observations of the binary
millisecond pulsar J1614-223010,11 that show a strong Shapiro delay
signature.We calculate the pulsarmass to be (1.976 0.04)M[, which
rules out almost all currently proposed2–5 hyperon or boson con-
densate equations of state (M[, solar mass). Quark matter can sup-
port a star thismassive only if the quarks are strongly interacting and
are therefore not ‘free’ quarks12.
In March 2010, we performed a dense set of observations of J1614-

2230 with the National Radio Astronomy Observatory Green Bank
Telescope (GBT), timed to follow the system through one complete
8.7-d orbit with special attention paid to the orbital conjunction, where
theShapirodelay signal is strongest.Thesedatawere takenwith thenewly
built Green Bank Ultimate Pulsar Processing Instrument (GUPPI).
GUPPI coherently removes interstellar dispersive smearing from the
pulsar signal and integrates the data modulo the current apparent pulse
period, producing a set of average pulse profiles, or flux-versus-rota-
tional-phase light curves. From these, we determined pulse times of
arrival using standard procedures, with a typical uncertainty of,1ms.
We used themeasured arrival times to determine key physical para-

meters of the neutron star and its binary system by fitting them to a
comprehensive timing model that accounts for every rotation of the
neutron star over the time spanned by the fit. The model predicts at
what times pulses should arrive at Earth, taking into account pulsar
rotation and spin-down, astrometric terms (sky position and proper
motion), binary orbital parameters, time-variable interstellar disper-
sion and general-relativistic effects such as the Shapiro delay (Table 1).
We compared the observed arrival times with the model predictions,
and obtained best-fit parameters by x2 minimization, using the
TEMPO2 software package13. We also obtained consistent results
using the original TEMPO package. The post-fit residuals, that is,
the differences between the observed and the model-predicted pulse
arrival times, effectively measure how well the timing model describes
the data, and are shown in Fig. 1. We included both a previously
recorded long-term data set and our new GUPPI data in a single fit.
The long-term data determine model parameters (for example spin-
down rate and astrometry) with characteristic timescales longer than
a few weeks, whereas the new data best constrain parameters on
timescales of the orbital period or less. Additional discussion of the

long-termdata set, parameter covariance and dispersionmeasure vari-
ation can be found in Supplementary Information.
As shown in Fig. 1, the Shapiro delay was detected in our data with

extremely high significance, and must be included to model the arrival
times of the radio pulses correctly.However, estimating parameter values
and uncertainties can be difficult owing to the high covariance between
many orbital timing model terms14. Furthermore, the x2 surfaces for the
Shapiro-derived companionmass (M2) and inclination angle (i) are often
significantly curved or otherwise non-Gaussian15. To obtain robust error
estimates, we used a Markov chainMonte Carlo (MCMC) approach to
explore the post-fitx2 space andderive posterior probability distributions
for all timing model parameters (Fig. 2). Our final results for the model

1National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, Virginia 22093, USA. 2Astronomy Department, University of Virginia, Charlottesville, Virginia 22094-4325, USA. 3Eureka
Scientific, Inc., Oakland, California 94602, USA. 4Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands. 5Astronomical Institute ‘‘Anton Pannekoek’’,
University of Amsterdam, 1098 SJ Amsterdam, The Netherlands.

Table 1 | Physical parameters for PSR J1614-2230
Parameter Value

Ecliptic longitude (l) 245.78827556(5)u
Ecliptic latitude (b) 21.256744(2)u
Proper motion in l 9.79(7)mas yr21

Proper motion in b 230(3)mas yr21

Parallax 0.5(6)mas
Pulsar spin period 3.1508076534271(6)ms
Period derivative 9.6216(9) 310221 s s21

Reference epoch (MJD) 53,600
Dispersion measure* 34.4865pc cm23

Orbital period 8.6866194196(2) d
Projected semimajor axis 11.2911975(2) light s
First Laplace parameter (esinv) 1.1(3) 31027

Second Laplace parameter (ecosv) 21.29(3) 31026

Companion mass 0.500(6)M[
Sine of inclination angle 0.999894(5)
Epoch of ascending node (MJD) 52,331.1701098(3)
Span of timing data (MJD) 52,469–55,330
Number of TOAs{ 2,206 (454, 1,752)
Root mean squared TOA residual 1.1 ms

Right ascension (J2000) 16h 14min 36.5051(5) s
Declination (J2000) 222u 309 31.081(7)99
Orbital eccentricity (e) 1.30(4) 31026

Inclination angle 89.17(2)u
Pulsar mass 1.97(4)M[
Dispersion-derived distance{ 1.2 kpc
Parallax distance .0.9 kpc
Surface magnetic field 1.8 3108G
Characteristic age 5.2Gyr
Spin-down luminosity 1.2 31034 erg s21

Average flux density* at 1.4GHz 1.2mJy
Spectral index, 1.1–1.9GHz 21.9(1)
Rotation measure 228.0(3) radm22

Timingmodel parameters (top), quantities derived from timingmodel parameter values (middle) and
radio spectral and interstellar medium properties (bottom). Values in parentheses represent the 1s
uncertainty in the final digit, asdeterminedbyMCMCerror analysis. The fit includedboth ‘long-term’ data
spanning seven years and new GBT–GUPPI data spanning three months. The new data were observed
using an800-MHz-wide band centred at a radio frequency of 1.5GHz. The rawprofileswere polarization-
and flux-calibrated and averaged into 100-MHz, 7.5-min intervals using the PSRCHIVE software
package25, from which pulse times of arrival (TOAs) were determined. MJD, modified Julian date.
*These quantities vary stochastically on>1-d timescales. Values presented here are the averages for
our GUPPI data set.
{Shown in parentheses are separate values for the long-term (first) and new (second) data sets.
{Calculated using the NE2001 pulsar distance model26.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.

 89.1

 89.12

 89.14

 89.16

 89.18

 89.2

 89.22

 89.24a b

0.48 0.49 0.5 0.51 0.52

In
cl

in
at

io
n 

an
gl

e,
 i 

(°
)

Companion mass, M2 (M()
1.8 1.85 1.9 1.95 2 2.05 2.1 2.15

P
ro

ba
bi

lit
y 

de
ns

ity

Pulsar mass (M()

Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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Mmax = 1.65M! → 1.97± 0.04 M!

Calculation of neutron star properties 
requires EOS up to high densities.

Strategy: 
Use observations to constrain the high-density part of the nuclear EOS.



Neutron star radius constraints

   incorporation of beta-equilibrium: neutron matter         neutron star matter

parametrize piecewise high-density extensions of EOS:

• use polytropic ansatz

• range of parameters

p ∼ ρΓ
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Constraints on the nuclear equation of state

use the constraints:

vs(ρ) =
√

dP/dε < c

Mmax > 1.97 M!

causality

recent NS observation
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1.4 M! 9.8− 13.4 km
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FIG. 2: Scaled power spectral density of the GW signal for
the Shen (black solid line) and the eosUU (blue line) EoSs
compared to the Advanced LIGO (red dashed line) and ET
(black dashed line) unity SNR sensitivities. The inset shows
the GW amplitude of the + polarization at 50 Mpc for the
Shen EoS.

gles) belong to simulations for the MIT60 and Glendnh3
EoSs, which both have strikingly different M-R relations
(dashed lines in Fig. 1). Note that a SQM EoS could
lead to discriminating observational features, e.g. in the
cosmic ray flux [20, 22], but the particular model MIT60
is ruled out by the 1.97M! NS of [3]. The Glendnh3 EoS
seems in conflict with theoretical knowledge of EoS prop-
erties at subnuclear densities [4]. Ignoring the two out-
liers, thefpeak −Rmax correlation (crosses only) becomes
even stronger. Already one determination of fpeak could
therefore seriously constrain the M-R relation and conse-
quently the nuclear EoS. Additionally, simulated merg-
ers of 1.2 M!-1.5 M! binaries for selected EoSs (circles)
demonstrate that the relation between fpeak and Rmax is
not very sensitive to the initial mass ratio [11]. Squares
in Fig. 3 display results for 1.2 M!-1.2 M! mergers. For
those fpeak is clearly lower [11] with differences being
larger for smaller Rmax. But also for the symmetric bi-
naries with lower mass a correlation seems to exist. We
stress that the total binary mass Mtot will be measurable
by the GW inspiral signal [43].
fpeak turns out to correlate also with other NS proper-

ties: From Fig. 4 (left panel) a close relation between the
radius R1.35 of a 1.35 M! star (or alternatively its com-
pactnessGM/(c2R)) and fpeak is evident. Again only the
MIT60 and Glendnh3 EoSs occur as outliers. This find-
ing is not surprising, because the TOV solutions show
already an approximate correlation between R1.35 and
Rmax. A similar coupling is found between fpeak and
the maximum central density ρmax of non-rotating NSs,
where higher ρmax yield higher fpeak.
However, no clear correlation exists between fpeak

and the maximum compactness of non-spinning NSs or
Mmax, though typically a lower Mmax gives a higher
fpeak, and fpeak > 2.8 kHz seems incompatible with
Mmax > 2.4 M!. We propose the following expla-
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FIG. 3: Peak frequency of the postmerger GW emission vs.
radius of the maximum-mass TOV solution. Blue cases are
excluded by [3]. See text for symbols.

10 12 14
1.5

2

2.5

3

3.5

4

R
1.35

 [km]

f p
e

a
k
 [

k
H

z
]

0.04 0.06 0.08 0.1

(M
tot

/(R
max

)
3
)
1/2

FIG. 4: Peak frequency vs. radius of a 1.35 M! NS (left) and

vs.
√

Mtot/R3
max in geometrical units (right) withMtot being

the binary mass. Symbols have same meaning as in Fig. 3.

nation for the fact that the postmerger GW emission
is determined by Rmax. Numerical calculations have
shown that for any EoS the frequency of the f-mode,
which generates the GW radiation at fpeak [42], depends
nearly linearly on the square root of the mean density
(M/R3)1/2 [44]. Since we fix Mtot, the mass-dependence
drops out. Assuming that the radius of the DRO re-
lates to the M-R relation of non-rotating NSs [47], we
end up with fpeak ∝ R−1.5

max . This hypothesis is verified
in the right panel of Fig. 4, where fpeak is plotted versus
(Mtot/R3

max)
1/2 and except for the mentioned outliers a

clear power-law scaling is visible.
Despite an estimated detection rate of only 0.1 to 1

events/yr for Advanced LIGO (accounting for random
orientation and adopting the “realistic” and the “high”
merger rates of [18]) the relations found in this work may
prove very useful, because already a single measurement
is likely to determine Rmax and R1.35 to within some
100 m. This will place significant constraints on the
M-R relation and thus the EoS (see [2, 45] for the in-
verse procedure). These prospects appear superior to the

Bauswein and Janka PRL 108, 011101 (2012),
Bauswein, Janka, KH, Schwenk arXiv:1204.1888

• high-density part of nuclear EOS only loosely constrained

• simulations of NS binary mergers show strong correlation between between
           of the GW spectrum and the raduis of a NS
• measuring         is key step for constraining EOS systematically at large  
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FIG. 9: Peak frequency of the postmerger GW emission ver-
sus the radius of the maximum-mass configuration of non-
rotating NSs for different EoSs. Red symbols correspond to
microphysical EoSs with a consistent temperature treatment
(class i), black symbols show data points for barotropic mi-
crophysical EoSs (without temperature and electron fraction
dependence) (class ii), green (smaller) symbols belong to EoSs
implemented as piecewise polytropes fitting barotropic micro-
physical EoSs (class iii), and blue symbols display results for
microphysical EoSs at low densities with high-density exten-
sions by piecewise polytropes (class iv). Classes (ii) to (iv)
are supplemented with an ideal-gas component for mimicking
thermal effects. Plus signs indicate EoSs which are excluded
by the observation of a 1.97 M! pulsar [10]. EoSs describing
absolutely stable strange quark matter are denoted by trian-
gles. Note that the MIT60 EoS (red triangle) is ruled out by
the 1.97 M! mass limit.

The EoSs of class (iv) (blue) cover a broad range of pos-
sible behaviors at intermediate and high densities, which
are partially very extreme (e.g., very high pressure and
sound speed at high densities, see Figs. 2 and 3). There-
fore, it is expected that the resulting variations will also
span a broad range, which is however consistent with
the chiral effective field theory constraints at saturation
densities and below. The models of class (iii) involve a
twofold simplification that can explain the larger devia-
tions from the correlations. First, the fits of the EoSs do
not perfectly match the underlying microphysical model
(e.g. in the sound speed, see [42]), leading to peak fre-
quencies which may be slightly different from those ob-
tained by the original model. Second, due to the usage
of the fit also the stellar parameters of nonrotating NSs
differ slightly from those obtained with the original EoSs.
Bear in mind that the same reasoning for EoSs of class
(iii) and class (iv) EoSs also applies to all following rela-
tions discussed in this paper (Fig. 13 to 21).
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FIG. 10: Peak frequency of the postmerger GW emission ver-
sus the radius of a nonrotating NS with 1.8 M! for different
EoSs. Symbols have the same meaning as in Fig. 9.
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FIG. 11: Peak frequency of the postmerger GW emission ver-
sus the radius of a nonrotating NS with 1.6 M! for different
EoSs. Symbols have the same meaning as in Fig. 9.

B. Fits and residuals

To quantify the discussion above and to introduce a
measure for the scatter inherent to the presented rela-
tions, we fit power laws of the type RTOV = a·(fpeak)b+c
through the data points of Figs. 9-12 with a, b, c being pa-
rameters to be obtained by a least-square fit. RTOV de-

Gravitational wave signals from neutron star binary mergers
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Why is textbook nuclear physics so hard?

VL=0(k , k ′) ∝
∫

r2 dr j0(kr) V (r) j0(k ′r) = 〈k |VL=0|k ′〉 =⇒ Vkk ′ matrix

Momentum units (! = c = 1): typical relative momentum
in large nucleus ≈ 1 fm−1 ≈ 200 MeV but . . .

Repulsive core =⇒ large high-k (! 2 fm−1) components
Dick Furnstahl RG in Nuclear Physics

l̄S

“Very soft potentials must be 
excluded because they do not 
give saturation; 
they give too much binding and 
too high density. In particular, a 
substantial tensor force is 
required.”
Hans Bethe (1971)

nS ∼ 0.16 fm−3

Ebinding/N ∼ −16 MeV

empirical nuclear 
saturation properties

l̄S ∼ 1.8 fm

KH, Bogner, Furnstahl, Nogga, PRC(R) 83, 031301 (2011)



Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?
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Momentum units (! = c = 1): typical relative momentum
in large nucleus ≈ 1 fm−1 ≈ 200 MeV but . . .

Repulsive core =⇒ large high-k (! 2 fm−1) components
Dick Furnstahl RG in Nuclear Physics

l̄S

• nuclear saturation delicate due to cancellations of large kinetic and
potential energy contributions
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• 3N forces are essential! 3N interactions fitted to       and        properties
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• saturation point consistent with experiment, without free parameters

• cutoff dependence at 2nd order significantly reduced

• 3rd order contributions small

• cutoff dependence consistent with expected size of 4N force contributions

ENN+3N,eff
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Hierarchy of many-body contributions 
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• binding energy results from cancellations of much larger kinetic and potential 
energy contributions

• chiral hierarchy of many-body terms preserved for considered density range

• cutoff dependence of natural size, consistent with chiral exp. parameter ∼ 1/3

neutron matter nuclear matter
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RG evolution of 3N interactions in momentum space

|pqα〉 i ≡ |piqi; [(LS)J(lsi)j]JJz(Tti)T Tz〉

p
q

Three-body Faddeev basis:

p

q
p

q

|pqα〉1 |pqα〉2 |pqα〉3

|ψi〉 = G0

[
2tiP + (1 + tiG0)V i

3N (1 + 2P )
]

|ψi〉

Faddeev bound state equations:

i〈pqα|P |p′q′α′〉i =i〈pqα|p′q′α′〉j



dVij

ds
= [[Tij , Vij ] , Tij + Vij ] ,

dV123

ds
= [[T12, V12] , V13 + V23 + V123]

+ [[T13, V13] , V12 + V23 + V123]
+ [[T23, V23] , V12 + V13 + V123]
+ [[Trel, V123] , Hs]

SRG flow equations of NN and 3N forces in Faddeev basis

ηs = [Trel, Hs]
dHs

ds
= [ηs, Hs]

• spectators correspond to delta functions, matrix representation of      ill-defined

• solution: explicit separation of NN and 3N flow equations

see Bogner, Furnstahl, Perry PRC 75, 061001(R) (2007)

• only connected terms remain in           , ‘dangerous’ delta functions cancel dV123

ds

Hs

H = T + V12 + V13 + V23 + V123



RG evolution of 3N interactions in momentum space
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               First implementation:
Invariance of        within            for consistent chiral interactions at            E

3H
gs 16 keV N2LO



Decoupling of matrix elements

450/500 MeV

ξ2 = p2 +
3
4
q2 tan θ =

2 p√
3 q

hyperradius: hyperangle:

Λ/Λ̃

550/600 MeV

 same decoupling patterns like in NN interactions

θ =
π

12
KH, PRC(R) 85, 021002 (2012)



Universality in 3N interactions at low resolution
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Figure 17: Diagonal (left) and off-diagonal (right) momentum-space matrix elements for various phe-
nomenological NN potentials initially (upper figures) and after RG evolution to low-momentum inter-
actions Vlow k [5, 6] (lower figures) for a smooth regulator with Λ = 2.0 fm−1 and nexp = 4.
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Figure 18: Diagonal (left) and off-diagonal (right) momentum-space matrix elements of different N3LO
NN interactions (EM [20] and EGM [44]) initially (upper figures) and after RG evolution to low-
momentum interactions Vlow k [5,6] (lower figures) for a smooth regulator withΛ = 2.0 fm−1 and nexp = 4.
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phase-shift 
equivalence

common long-
range physics

(approximate) universality of 
low-resolution NN interactions

To what extent are 3N interactions constrained at low resolution?

• only two low-energy constants 

• 3N interactions give only subleading contributions to observables

cD and cE



Universality in 3N interactions at low resolution
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• remarkably reduced model dependence for typical momenta               ,

matrix elements with significant phase space well constrained at low resolution

• new momentum structures induced at low resolution

• study based on          chiral interactions, improved universality at          ?     

∼ 1 fm−1

N2LO N3LO

KH, PRC(R) 85, 021002 (2012)



‣ different decoupling patterns (e.g. Vlow k)

‣ improved efficiency of evolution

‣ suppression of many-body forces

Current/future directions

k2

k′2

• transformation of evolved interactions to oscillator basis

‣ application to finite nuclei, complimentary to HO evolution 
(no core shell model, coupled cluster)

• study of alternative generators

• application to infinite systems

‣ equation of state

‣ systematic study of induced many-body contributions

‣ include initial N3LO 3N interactions (see also next talk!)

Overview RG Summary Extras Flow Results History Eqs. Problem

Two ways to decouple with RG equations
“Vlow k ”

Λ
0

Λ
1

Λ
2

k’

k

Lower a cutoff Λi in k , k ′,
e.g., demand
dT (k , k ′; k2)/dΛ = 0

Similarity RG

λ
0

λ
1

λ
2

k’

k

Drive the Hamiltonian toward
diagonal with “flow equation”
[Wegner; Glazek/Wilson (1990’s)]

Dick Furnstahl RG in Nuclear Physics

Anderson et al. , PRC 77, 037001 (2008)

• explicit calculation of unitary 3N transformation

‣ RG evolution of operators

‣ study of correlations in nuclear systems            factorization 



Summary

• low-resolution interactions allow simpler calculations for nuclear systems

• observables invariant under resolution changes, interpretation of results can change!

• chiral EFT provides systematic framework for constructing nuclear Hamiltonians

• 3N interactions are essential at low resolution

• nucleonic matter equation of state based on low-resolution interactions consistent 

with empirical constraints

• constraints for the nuclear equation of state and structure of neutron stars

Outlook

• RG evolution of three-nucleon interactions: microscopic study of light nuclei and 
nucleonic matter using chiral nuclear interactions at low resolution

• RG evolution of operators: nuclear scaling and correlations in nuclear systems 


