Simulating Graphene with a Microwave Photonic Crystal

EMMI 2012

- Microwave billiards and graphene
- Dirac spectrum in a photonic crystal
 - Reflection and transmission spectra
- Microwave Dirac billiard
 - Spectral properties
 - Length spectrum of classical periodic orbits
- Summary and outlook

Supported by DFG within SFB 634

S. Bittner, C. Cuno B. Dietz, J.Isensee, T. Klaus, M. Miski-Oglu, A. R., C. Ripp, L. von Smekal

Classical Billiard

- Pointlike particle in a closed area
- Specular reflection
- Shape of boundary defines the type of dynamics

Regular and chaotic dynamics

- Energy and p_x² are conserved
- Equations of motion are integrable
- Predictable for infinitely long times
- Billiards in quantum mechanics?

- Only energy is conserved
- Exponential divergence
- Predictable for a finite time only

Quantum Billiards and Microwave Billiards

Quantum billiard

Microwave billiard

$$\left(\frac{\hbar}{2m}\Delta + E\right)\Psi = 0, \ \Psi|_{\partial\Omega} = 0$$

 $\lambda > 2d$

$$\left(\Delta + k^2\right) E_z = 0, \ E_z|_{\partial\Omega} = 0$$

eigenvalue E

 \leftrightarrow

wave number $k = \frac{2\pi f}{c}$

eigenfunction Ψ

 \leftrightarrow

electric field strength E_z

Measurement Principle

 $\frac{\mathbf{P}_{out,2}}{\mathbf{P}_{in,1}} = \left| \mathbf{S}_{21} \right|^2$

Resonance spectrum

Resonance density

Length spectrum

Microwave Billiards as Model Systems

- Microwave billiards serve as models for nonrelativistic quantum billiards
 - Study of universal spectral fluctuation properties
 - Generic properties of chaotic scattering systems
- Aim: relativistic quantum billiards
- Experimental realization: microwave analogon of graphene

Nobel Prize in Physics 2010

Photo: Sergeom, Wikimedia Commons

Andre Geim

Photo: University of Manchester, UK

Konstantin Novoselov

The Nobel Prize in Physics 2010 was awarded jointly to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene"

Graphene

M. Katsnelson, Materials Today, 2007

- Triangular Bravais lattice with two carbon atoms per unit cell
- Near each corner of the first hexagonal Brillouin zone the electron energy E has a conical dependence on the quasimomentum
- "What makes graphene so attractive for research is that the spectrum closely resembles the Dirac spectrum for massless fermions."
- Can we simulate it with electromagnetic waves?

Photonic Crystal

• A photonic crystal is a structure, whose electromagnetic properties vary periodically in space, e.g., an array of metallic cylinders

- Below a certain frequency only two dimensional TM modes exist
- Propagating modes are solutions of the 2D scalar Helmholtz equation
- Equivalent to Schrödinger equation for quantum multiple-scattering problem

Calculated Photonic Band Structure

• Dispersion relation $\omega(\vec{k})$ of a photonic crystal exhibits a band structure analogous to the electronic band structure in a solid

- The triangular photonic crystal possesses a Dirac spectrum
- The voids form a honeycomb lattice like atoms in graphene

Effective Hamiltonian around the Dirac Point

Close to Dirac point the effective Hamiltonian is a 2x2 matrix

$$\hat{H}_{\text{eff}} = \omega_D \mathbb{1} + v_D \left(\delta k_x \hat{\sigma}_x + \delta k_y \hat{\sigma}_y \right)$$

• Substitution $\delta k_x \to -i\partial_x$ and $\delta k_y \to -i\partial_y$ leads to the Dirac equation

$$\begin{pmatrix} 0 & \partial_x - i\partial_y \\ \partial_x + i\partial_y & 0 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = i \frac{\omega - \omega_D}{v_D} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

- Experimental observation of a Dirac spectrum in an open photonic crystal
- Next: Scattering experiment

Scattering Experiment

- Horn antenna emits approximately plane waves
- VNA measures the modulus of the scattering matrix given by

$$|S_{ba}|^2 = \frac{P_b}{P_a}$$

- Transmission: $|S_{ab}|^2$, $|S_{ba}|^2$
 - Reflection: $|S_{aa}|^2, |S_{bb}|^2$

Experimental Realization of 2D Photonic Crystal

• # cylinders: 23 x 38 = 874

• Cylinder radius: R = 5 mm

• Frequency: $f_{\text{max}} = 19 \text{ GHz}$

• First step: experimental observation of the band structure

Transmission through the Photonic Crystal

- Transmission spectrum possesses two stop bands
- Next: comparison with calculated band structure

Projected Band Diagram

- The density plot of the 1st frequency band
- The projected band diagram along the path ΓΜΚΓ
- The 1st and 2nd frequency bands touch each other at the corners of the Brillouin zone \rightarrow Dirac Point

Transmission through the Photonic Crystal

- The positions of measured stop bands coincide with the calculated ones
 - → lattice parameters chosen correctly
- Dirac point is not sufficiently pronounced in the transmission spectra
 - → single antenna reflection measurement

Single Antenna Reflection Spectrum

Measurement with a wire antenna a put through a drilling in the top plate
→ point like field probe

- Characteristic cusp structure around the Dirac frequency
- Next: analysis of the measured spectrum

Local Density of States and Reflection Spectrum

LDOS

$$L(\vec{r}, f) \propto \int_{BZ} |\psi(\vec{k}, \vec{r})|^2 \frac{1}{2\pi} \delta(f - f(\vec{k})) d^2k$$

LDOS around the Dirac point (Wallace, 1947)

$$L(\vec{r_a}, f) \sim \frac{\langle |\psi(\vec{r_a})|^2 \rangle}{v_D^2} |f - f_D|$$

 The scattering matrix formalism relates the reflection spectra to the local density of states (LDOS)

$$1 - |S_{aa}(f)|^2 \propto L(\vec{r}_a, f)$$

• Three-parameter fit formula $\left|S_{aa}(f)\right|^2 = D - C\left|f - f_D\right|$ fit parameters

Reflection Spectra

• Description of experimental reflection spectra $\left|S_{aa}(f)\right|^2 = D - C \left|f - f_D\right|$

- Experimental Dirac frequencies agree with calculated one, f_D =13.81 GHz, within the standard error of the fit
- Oscillations around the mean intensity → origin?

Dependence of Oscillations on Crystal Size

- Nature of the oscillations is a finite size effect
- Period of the oscillations is thus related to the photonic crystal size

Comparison with STM Measurements

graphene flake, Li et al. (2009)

- Tunneling conductance is proportional to LDOS
- Similarity with measured reflection spectrum of the photonic crystal
- Oscillations in STM are not as pronounced due to the large sample size

Summary I

- Connection between reflection spectra and LDOS is established
- Cusp structure in the reflection spectra is identified with the Dirac point
- Photonic crystal simulates one particle properties of graphene
- Results are published in Phys. Rev. B 82, 014301 (2010)
- Next: transmission near the Dirac Point

Transport near the Dirac Point

J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J. Beenakker, PRL **96**, 246802 (2006)

- Density of states vanishes at the Dirac point
- Finite conductivity σ of a graphene sample at Dirac point
- Conductance of a graphene ribbon scales as $G \sim \frac{e^2}{h} \frac{W}{L}$

Extremal Transmission through a Photonic Crystal

R.A. Sepkhanov, Ya.B. Bazalij and C.W.J. Beenakker (2007)

- Triangular array of holes in a dielectric host medium
- Transmission has a minimum at the Dirac frequency
- Vanishing DOS → transmission by means of evanescent modes
- Transmitted power decays as 1/L in contrast to exponential decay at a band gap

Transmission Spectra through Photonic Crystals in ΓK Direction: Some Examples

- Transmission minimum at the Dirac frequency
- Scaling of the transmission with crystal thickness?

Extremal Transmission at the Dirac Point

Thickness L of the photonic crystal varies from 4 to 40 layers

- Ballistic transport in the transmission bands
- 1/L scaling at the Dirac frequency
- Exponential attenuation in the stop bands

Summary II

- Transmission spectra of photonic crystals of different thickness L were measured
- Transmission spectra of the photonic crystal near the Dirac frequency show similar scaling as the conductance in graphene, i.e., 1/L behaviour
- Results are published in Phys. Rev. B **85**, 064301 (2012)
- Next: Photonic crystal in a box

Dirac Billiard

Photonic crystal in a box: bounded area = billiard

- 888 cylinders milled out of a brass plate
- Height d = 3 mm $\rightarrow f_{max}^{2D}$ = 50 GHz for 2D system
- Lead plated \rightarrow superconducting below 7.2 K \rightarrow high Q value
- Boundary does not violate the translation symmetry → no edge state

Maksim and 888 Screws

Transmission Spectrum at 4 K

- Pronounced stop bands
- Quality factors > 5.10⁵
- $\langle \Gamma \rangle / \langle D \rangle = 10^{-3} \rightarrow \text{complete spectrum}$
- Altogether 5000 resonances observed

Density of States of the Measured Spectrum and the Band Structure

- Positions of stop bands are in agreement with calculation
- DOS related to slope of a band
- Dips correspond to Dirac points
- High DOS at van Hove singularities
- Flat band has very high DOS
- Qualitatively in good agreement with prediction for graphene

(Castro Neto et al., RMP 81,109 (2009))

Integrated Density of States: 1st and 2nd Bands

- Does not follow Weyl law for 2D resonators ($N_{Weyl}(f) = rac{4\pi A}{c^2}f^2$)
- Small slope at the Dirac frequency → nearly vanishing DOS
- Two parabolic branches
- Approximately symmetric with respect to the Dirac frequency

Integrated DOS near Dirac Point

- Weyl law for Dirac billiard $N(k)=\frac{A}{2\pi}k^2+\frac{U_{zz}}{\pi}k+C$ (J. Wurm *et al.*, PRB **84**, 075468 (2011))
 - U_{zz} is length of zigzag edges $k=2\pi \frac{|f-f_D|}{r}$

 - group velocity v_D is a free parameter
- Same area A for two branches, but different group velocities $\rightarrow \alpha \neq \beta$
 - → electron-hole asymmetry like in graphene

Periodic Orbit Theory (POT)

Description of quantum spectra in terms of classical periodic orbits

Peaks at the lengths of POs

Periodic orbits

Effective description around Dirac point

Experimental Length Spectrum

- k_{max} = 70 m⁻¹, corresponds to 80 levels
- Some peak positions deviate from the lengths of POs
- Comparison with semiclassical predictions
 - (J. Wurm et al., PRB **84**, 075468 (2011))
- Possible reasons for deviations:
 - Short sequence of levels
 - Anisotropic dispersion relation around Dirac point

Spectral Properties of a Rectangular Dirac Billiard: Nearest Neighbour Spacing Distribution

- 159 levels around Dirac point
- Rescaled resonance frequencies such that $\langle s_i \rangle = 1$
- Poisson statistics
- Similar behavior at second Dirac point

NND: 3rd Band

- Very dense spectrum $\langle \Gamma \rangle / \langle D \rangle \approx 10^{-1}$
- Rescale frequencies with a polynom of 8th order
- Seems to agree with GOE
- Missing levels?

Summary III

Photonic crystal simulates one particle properties of graphene

- Realisation of superconducting microwave Dirac billiard i.e. photonic crystal in a metallic box serves as a model for a relativistic quantum billiard
- Experimental DOS reproduces the calculated photonic band structure
- Fluctuation properties of the spectrum were investigated
- Open problems: semiclassical description of the length spectrum

Outlook

in Collaboration with J.Berges, C.Fischer and L. von Smekal

Simulation of many body effects using RF nonlinear materials

Billiard filled with nonlinear dielectric material

$$\Delta E_z = -k^2 E_z - \eta |E_z|^2 E_z + \gamma |E_z|^4 E_z$$

- Wave propagation described by Gross-Pitaevskii equation
- Model for interacting bosons in a hard-wall potential
- Interaction becomes observable at high RF power coupled into the resonator
- Higher-order nonlinearities produce the Mexican-hat potential

Outlook

Photonic crystal embedded into a nonlinear medium mimics spinor fields

- Wave propagation described by a nonlinear Dirac equation
- Interacting fermions in a graphene flake $\alpha_g = \frac{e^2}{4\pi\varepsilon\hbar v_F}$
 - → Laboratory for strongly interacting fermions
- Study of transport properties and semimetal-insulator phase transition

