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Functions of an Interacting Fermi Gas:

Number density — p(r) = > ! (r) ta(r)

spin density  S,(r) = 33, 5 vl (1o Jus(r)

operators, where o, 3 = (7, ) is a spin label and
0@ a Pauli matrix ==  correlation functions

density-density  x,(r7, ¥'7") = —(T; [p(r7)p(r'7")])
spin-spin Xs(r7, v'7") = — (T, [S,(r7)S,(r'T')])

where T, = imaginary-time ordering operator and
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H = Hamiltonian, N = number operator, and
1t = chemical potential.

e (.--) = grand-canonical average at equilibrium
< linear-response theory !

e For a homogeneous system in r and 7:

1/(kgT) ' ,
X”/S(q’ QV) - / d(T — 7'/) e/ (T=7')
0
X /d(l‘ — r’) e—iq-(r—r/) Xn/s(rT, I‘/T’)

q = wave vector and Q, = 27v T (v integer)
at temperature T.
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The static limits are of particular interest:

on| _ KT
n

o —limg_o xn(a,2, = 0) = x» = 5| =

kT = isothermal compressibility , n = density.

o —limg_o xs(d,Q, =0) = xs = %_A:

Xs = spin susceptibility
M = magnetization, h = magnetic field.
e For non-interacting fermions:
\ = 2No and ¥ = 2Ny
No = mkg/(2m)? = density of states per spin.
e The above relations for y, and . are Ward

identities that connect single- (n and M) and
two-particle (= response functions) properties.
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The t-matrix for the attractive Fermi gas:
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Inter-particle interaction Vg = vpd(r — r') (v < 0).

Regularize Vg in terms of the scattering length ar
of the 2-body problem:

m 1., /ko dk m
4rar v (27)3 k2
ko = ultraviolet cutoff — oo while vy — 0
in order to keep ar at the desired value.

e Above T, a reasonable description is obtained in
terms of the t-matrix (Galitskii) with self-energy:



The t-matrix self-energy:

q-k
K k
q-k q-k’ q-k ¢-k’ 9k q-K
+’+ +0+?+
+JI»— [ .
Kk K’ k kK N

In principle , all single-particle lines should be
self-consistent for the theory to be “conserving”
(Baym). In practice , this is most often avoided.



The critical temperature T, according to

the t-matrix:
)
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(keap)”
The Thouless criterion [, (q = 0,9, = 0; u) = 0
plus the density equation to fix u(T — T.)
determine T, throughout the BCS-BEC crossover
in terms of the coupling parameter (krar)~!.
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e In the BEC limit when (kraf)™' > 1:
21 = —€y + pp with ¢g = (maz)™?

(g = bosonic chemical potential

)2/3

T — TBEC—331(

2

and INy(q, Q) ~ — (m%ZF) - —r

v 4m+'U’B

= propagator of “free” composite bosons.

e What about the two-particle response
about equilibrium?



Response kernels out of the t-matrix:

The kernel of the Bethe-Salpeter equation is:

= Aslamazov-Larkin
@  {s) (AL1) diagram

= Aslamazov-Larkin
(AL2) diagram

al

(b)

Qal

iy
o

(© ]E = Maki-Thomson
4l (MT) diagram



The static limit y, (compressibility):

(a)

(b)

(c)

(d)

(e)

If all the G — Gy, only
the (a) DOS, (b) MT,
(c) AL1, and (d) AL2
diagrams contribute to
the compressibility g—z :
In the BEC limit, only

AL1 and AL2 survivel!
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dnB
dus

T — T. since ug — 0.

(0)
e For point-like bosons, ( ) — 00 when

e An analogous result is obtained for fermions
throughout the BCS-BEC crossover at
the level of the t-matrix with all “bare” Gy !

e This result is related to the Thouless criterion
LHg=0,Q,=0)=0 <= 2" —order
transition when approaching T. from above.

e In the calculation of j—z with the t-matrix only
the €2, = 0 mode gives rise to this divergence!



The divergence of j—z when T — T

3.5
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0 0.3 0.6 0.9 1.2 1.5

T/Te
—— = full calculation (t-matrix)
----= Q,=0only
—— = difference between the two
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For point-like bosons, to heal this divergence one
has to take into account the interaction between
bosons (already at the Hartree-Fock /RPAE level):

OO~ MO~ @



—> symmetry factors 2,4,8,--- —



—> symmetry factors 2,4,8,--- —

xn(@) = X2(a) [1+2851(q) + (285 X((9))?
- <2gsxn (q)> }



—> symmetry factors 2,4,8,--- —

xn(@) = X2(a) [1+2851(q) + (285 X((9))?
- <2gsxn (q)> }

(0)
_ [ 9n8
_ Xg,o)(CI) (q— 0) <6“B)Tv
1-2g8x(q) 1+ 2gs <gZB>(O)
BJ T,V



—> symmetry factors 2,4,8,--- —

xn(@) = X2(a) [1+2851(q) + (285 X((9))?
- <2gsxn (q)> }

(0)
6nB
_ Xg,o)(CI) (q— 0) (@s) v
1-2g8x(q) 1+ 2gs <gZB>(O)
BJ T,V

(T = TH) -1 = _(%)
2gB 8#3 T.V



—> symmetry factors 2,4,8,--- —

xn(@) = X2(a) [1+2851(q) + (285 X((9))?
- <2gsxm 0ﬂ> J

(0) (&m)w)
Ous
_ Xn (q) (q . O) K T.V
1-2g5\(q) <an3><°>
n 1+2g81(3
e )TV
1
(T =T - = - (52
2gB 8#8 T,V
where gg 4,7;"’3 and g =2ggng

at the Hartree-Fock (Popov) level.
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How to heal it for composite bosons:

The corresponding effect is provided by the series of
AL diagrams for x,(q), where:
direct AL «— Hartree diagram (= RPA)
twisted AL «— Fock diagram (~ RPAE)
and the residual interaction between composite
bosons is identified as follows:
p+q,

—P*4,74,

T2

p+q,

—P
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The self-energy for composite bosons:

Correspondingly, the “bare” propagator '4(q) is
modified by the self-energy insertions X z(q):

q’-q-k
k+q T@) k+q k+q
—_—
+
—_—
q’+k

in the normal phase above T, ( <= a little bit
of self-consistency in the single-particle G !).
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The experimental way to measure g—z in

ultra-cold gases (about equilibrium):

e Rely on the Local Density Approximation (LDA):

1
p — p(r) — V(r) where V(r) = 5 Mwo r?

e From the density profile n(r) (with r = |r|):

dn(r) _ dn(r) du(r) s dn(r)
dr du(r) dr °Tdu(r)
where ZZ((:)) — ") (n(r), T) within LDA.

e At the unitary limit (krag)~! = 0, all regions
of the trap share the same coupling !
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25 |
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The MIT experiment (Zwierlein, 2011)

0
Xn/Xn

0.5 |
ol . . T
0051152253354 455
T/TE
e — experimental data
—— = full calculation (Popov)
—— = t-matrix

= high-T (virial) expansion
non-interacting Fermi gas



e Note how the residual interaction between
fluctuating Cooper pairs above T, accounts
the virial expansion when T 2> Tr.

e Away from the unitary limit:

16
8 L
ocg 4t
=
< 27 ]
1 ]
05 5
0 0..5 1 1.5 2
TME
—— (krap)l=+1.0
— (kFaF)_l =—-1.0

—— <« non-interacting Fermi gas
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The spin-spin correlation function ,,:

e For the spin response is better to proceed
from T =0 up to T, and beyond.

e Let's begin with the BCS theory for 0 < T < To:

1
X)) = —5 2k [Gulk+q) Gu(k)
+  Gia(k + q) Gia(k)]
where g = (q,,) and k = (k,w,) with
wp = (2n+ 1)wkg T (n integer) and
Gi11(k) < normal single-particle propagator

Gyo(k) <> anomalous single-particle propagator
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The static limit x5 (spin susceptibility):
In the static limit (Yosida - 1958):

clyl—>n}) Xzz (q) - _5 (27-‘-)3 8Ek T0 0

Ex = \/(k—2 - )2 + A2 and fr(E) = -

2m eE/kBT 11"
This is expected from the fact that Cooper pairs

have spin zero:
1

- = — (k/:a/:)_l =-1.0
...... (kFaF)_l =0.0
— = (k/:a/:)il =+1.0

_____ «+— noninteracting

08}
06!

04 |}

xscs(T)/%0(0)

02}

0 e
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With the inclusion of pairing fluctuations (t-matrix)
beyond mean field, the normal and anomalous BCS
response diagrams are replaced by the DOS and MT
contributions:

k+Q,0
Q Q o) P PR,
k, o ; < .
k+Q,0 K.G = .~

Q T Q i3



Spin susceptibility beyond BCS:

With the inclusion of pairing fluctuations (t-matrix)
beyond mean field, the normal and anomalous BCS
response diagrams are replaced by the DOS and MT
contributions:

b 2

[»]
O+
10

\
q b

N.B. The two AL diagrams do not contribute because
their contributions cancel each other!
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Xs — 0as T — 0 for spin singlets : )

08 1
s |
L
- , ,,,,,,
- 04r o
> — 2T T
0.2 //"
0 L meee - .
0 0.5 1 1.5 2
T/Me

____ t-matrix calculation at unitarity
- --- BCS calculation at unitarity

------ non-interacting Fermi gas
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Comparison with MIT experiment (Ketterle) at equilibrium & trapped:

Extract . for the whole trap by resolving the spin fluctuations
[PRL 106, 010402 (2011)]:

2 _3 T Xs
=y =3n () %

1

wlt 3

0
s

=

[%2]

X 04
¢ ]
0 . . . R
-1.5 -1 -0.5 0 0.5 1

(keap) "
e experimental data (with error bars)
€ t-matrix calculation for the trap

left data: T/Tg = 0.13 ; right data T/TF = 0.19
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a 304

K
L
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|

X,
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o
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+

Normalize
o o
T
°
.

panel (a): e compressibility x, at unitarity
panel (a): e spin susceptibility xs at unitarity
panel (b): e ratio Xxs/Xn
————— «—— non-interacting Fermi gas

Xs 2#0 as T — 0

What's goingon 7 | ?




First-hand comparison with theory for y, “at equilibrium”:

2
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TMe
o experimental data (with error bars)

t-matrix calculation
high-T virial expansion (attractive)

non-interacting Fermi gas
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In this experiment, Y. is obtained for the homogeneous system
via a complicated procedure by making two clouds (one with
spin Tand the other with spin |) to collide against each other:

e m—
.
g
- >
-

-
-
o

BB 3
T

Difference in column densities of the two clouds taken versus
time at intervals of 1 ms apart (spin T, spin |).
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Questioning the Zwierlein’s experiment:

e Does this experiment measure an equilibrium
property?

e Or does the system reach some non-equilibrium
regime?

e Has one eventually found a way to avoid the
occupancy of the bound-pair state and obtained
a “repulsive” Fermi gas out of an attractive one?

e This would correspond to the famous Arab
phoenix: “That it exists, everybody agrees,
where it is, nobody knows !"”

(Pietro Metastasio, “Demetrio”, 1731)
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The “upper’ branch of the Fermi gas:

An attractive interac-

tion reflects itself in
negative value of the

scattering length af:

When the bound state
sets in ar turns posi-
tive, even though the
inter-particle interaction

is still attractive <—

(te)

48 Phenomena at Near-Zero Energy 75
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ar > 0 refers to the scattering state at threshold,
that feels the presence of the bound state
underneath.

At equilibrium, the system has had enough time
for pairs to fell into the bound state (with the
help of 3-body forces).

But what about if pairs do not have this time
and remain unbound at threshold with ar > 0 7

We argue that this is precisely what's happening
in the Zwierlein's experiment with two bouncing
clouds of opposite spins.
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ladder propagator

+°°d_w Iml§(q,w)

T iQ,—w

lo(q,i§2,) = _/

where I'§(q,w) = To(q, i, — w +in) (n =07).
On the BEC side of the crossover, ImI§(q,w) has a delta-like
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Interpreting the Zwierlein's experiment:

Within the t-matrix approach, the bound state appears in the
ladder propagator

+°°d_w Iml§(q,w)

T iQ,—w

lo(q,i§2,) = _/

— 00

where I'§(q,w) = To(q, i, — w +in) (n =07).

On the BEC side of the crossover, ImI§(q,w) has a delta-like
contribution that corresponds to the bound state plus a
continuum that starts at w.(q) = q*/(4m) — 2 for given q.

One would thus expect that, to eliminate the contribution of
the bound state, it would be sufficient to begin the
w-integration from w.(q).
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The “quasi-repulsive” regime with ar > O:

However, it turns out that this is not enough to reproduce the
behavior of a weakly repulsive Fermi gas when (krar)™ > 1.

One has to subtract an additional frequency-independent term

re . T dw Imlf(q,w)  87/(mar)
r0 p(p7 q, ’Qu) - _/ I-QO _ ) 2
we(@) T v W " +P

where 2p is the incoming relative wave vector.

N.B. One is familiar with the presence of a similar constant term, for
instance, in the energy dependence of the scattering amplitude for zero
scattering angle [Landau-Lifshitz, Quantum Mechanics, §129]:

0 dE' Tmf (0, E) d
fOE —_ — —_— u f()rn
(0.E) /0 T E—F +ZH:E—E,,+B
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“Quasi-repulsive” gas: Phase diagram

We use the above expression for 'y” to calculate the thermodynamics
and the spin response function of this out-of-equilibrium system.

This approach is valid only on the BEC side of unitarity (0 < (krar)™!).

2
In the T-(krag)~! phase diagram is
we identify a “forbidden region” .
where it is not possible to solve the E T
density equation using ;°P: 05 1
Y e g0 ﬁFN\ _________ ]
i —

2-15-1-05 0 05 1 15 2 25
(kFaF)-1

---- T, (t-matrix)
PPS forbidden region

[SH « Shenoy & Ho, PRL 107, 210401 (2011)]
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“Quasi-repulsive” gas: Chemical potential

For (krag)™ > 1 = recover the weakly-repulsive Fermi gas (Galitskii)

4 4 5
,u:E,c[l—l—37Tk,:a,:+57r2(21—2ln2)(k,:ap) +:|
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(kFaF)—1
Galitskii repulsive
t-matrix repulsive with frequency-independent term
t-matrix repulsive without frequency-independent term
(wrong sign of the linear term!) [T =0.1TF]
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“Quasi-repulsive” gas: Spin susceptibility

Calculate s using [';™ in the DOS and MT diagrams: [T =0.1TF]

1.5
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%s/x°(0)

1.1t
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1 2 3 4 5 6 7 8 9 10
(keap)!
- - - - Galitskii repulsive (up to 2"-order)
- -~ Galitskii repulsive (up to 1%"-order)
t-matrix repulsive (with frequency-independent term)

= our t-matrix reproduces well the results of a truly
repulsive Fermi gas (Galitskii) when (krar)~! > 2
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Comparison with MIT experiment:
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Time has come when the response functions of ultra-
cold Fermi gases can be measured over an extended
temperature range.

The density fluctuations present bosonic-like features
as T approaches T, from above.

Spin fluctuations lock in a singlet even well above T,
(pseudo-spin gap).

Possibly, also the “upper branch” of the Fermi gas has

been excited by an MIT experiment in the attempt to
measure Y.

Recently, new data on the dynamic spin response of a
Fermi gas at low temperature are available, obtained
by Bragg spectroscopy.

Thank you for your attention and best wishes for your
brand new EMMI enterprise !



Supplemental Material: Bragg
spectroscopy with ultra-cold Fermi atoms

Dynamic spin response of a strongly interacting Fermi gas

S. Hoinka', M. Lingham!, M. Delehaye'?, and C. J. Vale!
LCentre for Atom Optics and Ultrafast Spectroscopy,
Swinburne University of Technology, Melbourne 3122, Australia
2 Departement de Physique, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris, France
(Dated: March 22, 2012)

We present an experimental investigation of the dynamic spin response of a strongly interacting
Fermi gas using Bragg spectroscopy. By varying the detuning of the Bragg lasers, we show that it is
possible to measure the response in the spin and density channels separately. At low Bragg energies,
the spin response is suppressed due to pairing, whereas the density response is enhanced. These
experiments provide the first independent measurements of the spin-parallel and spin-antiparallel
dynamic and static structure factors and open the way to a complete study of the structure factors
at any momentum. At high momentum the spin-antiparallel dynamic structure factor displays a
universal high frequency tail, proportional to w™5/2, where hw is the probe energy.

PACS numbers: 03.75.Hh, 03.75.Ss, 05.30.Fk

arXiv:1203.4657v1 [cond-mat.quant-gas] 21 Mar 2012



Comparison with the experimental data
for the spin dynamic structure factor (1):
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[ ] experimental data __ BCS theory (trap averaged)
~~~~~~ non-interacting gas

(k,cap)’l =0.0 T ~0.05TF q= 4 5kr



Comparison with the experimental data
for the spin dynamic structure factor (2):

25

[ ] experimental data __ BCS theory (trap averaged)
~~~~~~ non-interacting gas

(k,cap)’l =+1.0 T ~0.05T¢ q =45k



