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Temperature Dependence of Correlations
Functions of an Interacting Fermi Gas:

Number density ρ(r) =
∑

α ψ
†
α(r)ψα(r)

spin density Sz(r) = 1
2

∑
α,β ψ

†
α(r)σ

(z)
αβψβ(r)

operators, where α, β = (↑, ↓) is a spin label and
σ(z) a Pauli matrix =⇒ correlation functions

density-density χn(rτ, r′τ ′) = −〈Tτ [ρ(rτ)ρ(r′τ ′)]〉

spin-spin χs(rτ, r′τ ′) = −〈Tτ [Sz(rτ)Sz(r′τ ′)]〉

where Tτ = imaginary-time ordering operator and
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ψ†α(rτ+)ψβ(rτ) = e(H−µN)τψ†α(r)ψβ(r)e−(H−µN))τ

H = Hamiltonian, N = number operator, and
µ = chemical potential.

• 〈· · · 〉 = grand-canonical average at equilibrium
←→ linear-response theory !

• For a homogeneous system in r and τ :

χn/s(q,Ων) =

∫ 1/(kBT )

0

d(τ − τ ′) e iΩν(τ−τ ′)

×
∫

d(r − r′) e−iq·(r−r′) χn/s(rτ, r′τ ′)

q = wave vector and Ων = 2πνT (ν integer)
at temperature T.
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The static limits are of particular interest:

• − limq→0 χn(q,Ων = 0) = χn = ∂n
∂µ

∣∣∣
T

= κT

n2

κT = isothermal compressibility , n = density.

• − limq→0 χs(q,Ων = 0) = χs = ∂M
∂h

χs = spin susceptibility
M = magnetization, h = magnetic field.

• For non-interacting fermions:

χ
(0)
n = 2N0 and χ

(0)
s = 2N0µ

2
B

N0 = mkF/(2π)2 = density of states per spin.

• The above relations for χn and χs are Ward
identities that connect single- (n and M) and
two-particle (= response functions) properties.
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The t-matrix for the attractive Fermi gas:
Response about equilibrium

Inter-particle interaction Veff = v0δ(r − r′) (v0 < 0).

Regularize Veff in terms of the scattering length aF

of the 2-body problem:

m

4πaF
=

1

v0
+

∫ k0 dk

(2π)3

m

k2

k0 = ultraviolet cutoff →∞ while v0 → 0
in order to keep aF at the desired value.

• Above Tc , a reasonable description is obtained in
terms of the t-matrix (Galitskii) with self-energy:
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The t-matrix self-energy:

q k

k k

(q)

= + + . . .
q k q k�’

k k�’ k�’

q k q k�’

k k k�’

q k q k�’

(q)0

0

In principle , all single-particle lines should be
self-consistent for the theory to be “conserving”
(Baym). In practice , this is most often avoided.



The critical temperature Tc according to
the t-matrix:

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

T c
/T

F

(kFaF)-1

The Thouless criterion Γ−1
0 (q = 0,Ων = 0;µ) = 0

plus the density equation to fix µ(T → T +
c )

determine Tc throughout the BCS-BEC crossover
in terms of the coupling parameter (kFaF )−1.



The BEC limit with the t-matrix:

• In the BEC limit when (kFaF )−1 � 1:

2µ = −ε0 + µB with ε0 = (ma2
F )−1

µB = bosonic chemical potential

Tc → TBEC = 3.31
2m

(
n
2

)2/3

and Γ0(q,Ων) ' −
(

8π
m2aF

)
1

iΩν− q2

4m +µB

= propagator of “free” composite bosons.

• What about the two-particle response
about equilibrium?
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Response kernels out of the t-matrix:

The kernel of the Bethe-Salpeter equation is:

 

 

 

 

  
 

 

 

 

  

  

(a)

(b)

(c)

⇒ Aslamazov-Larkin
(AL1) diagram

⇒ Aslamazov-Larkin
(AL2) diagram

⇒ Maki-Thomson
(MT) diagram



The static limit χn (compressibility):
k+Q,

k,

k,

k+Q,

k’+Q, 

k’,

k’+Q, 

k, k’,

k+Q,

q k, 
 _

q k’,  
  _

k,

k+Q,

q k’,  
  

+ ...
k,

k+Q, k’+Q, 

k’,

Q
k"+Q+q

k", 

q k, 
 _

k" Q,  

k’+K+q,          
         _

k"+Q+q+K

(b)

(c)

(a)

(d)

(e)

Q Q

Q Q

_

_

k+k’+Q

Q Q

q

q+Q

Q

q

q+Q

Q

k’,

 k’+Q,

 q k,
 _

 _

 _

Q

q

q+Q
_

q+K

q+Q+K

If all the G → G0, only

the (a) DOS, (b) MT,

(c) AL1, and (d) AL2

diagrams contribute to

the compressibility dn
dµ .

In the BEC limit, only

AL1 and AL2 survive!



The static limit χn (continued):

• For point-like bosons,
(

dnB

dµB

)(0)

→∞ when

T → T +
c since µB → 0−.

• An analogous result is obtained for fermions
throughout the BCS-BEC crossover at
the level of the t-matrix with all “bare” G0 !

• This result is related to the Thouless criterion
Γ−1

0 (q = 0,Ων = 0) = 0 ⇐⇒ 2nd−order
transition when approaching Tc from above.

• In the calculation of dn
dµ with the t-matrix only

the Ων = 0 mode gives rise to this divergence!
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The divergence of dn
dµ when T → T +

c :

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0  0.3  0.6  0.9  1.2  1.5

n(
T)

/
n0 (0

)

T/TF

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  0.3 0.6 0.9 1.2 1.5

n/
n0 (0

)

T/TF

—— = full calculation (t-matrix)
- - - - = Ων = 0 only
—— = difference between the two



How to heal it for point-like bosons:

For point-like bosons, to heal this divergence one
has to take into account the interaction between
bosons (already at the Hartree-Fock/RPAE level):
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=⇒ symmetry factors 2, 4, 8, · · · =⇒

χn(q) = χ(0)
n (q)

[
1 + 2 gB χ

(0)
n (q) +

(
2 gB χ

(0)
n (q)

)
2

+
(

2 gB χ
(0)
n (q)

)
3 + · · ·

]
=

χ
(0)
n (q)

1− 2 gB χ
(0)
n (q)

(q → 0)
−
(
∂nB

∂µB

)(0)

T ,V

1 + 2 gB

(
∂nB

∂µB

)(0)

T ,V

(T → T +
c ) − 1

2 gB
= −

(
∂nB

∂µB

)
T ,V

where gB = 4πaB

mB
and µB = 2 gB nB

at the Hartree-Fock (Popov) level.
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How to heal it for composite bosons:

The corresponding effect is provided by the series of
AL diagrams for χn(q), where:

direct AL ←→ Hartree diagram (≈ RPA)

twisted AL ←→ Fock diagram (≈ RPAE)

and the residual interaction between composite
bosons is identified as follows:
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The self-energy for composite bosons:

Correspondingly, the “bare” propagator Γ0(q) is
modified by the self-energy insertions ΣB(q):

(q�’)
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k+q k+q

(q�’)

k+q

k k
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q�’ q k

+

in the normal phase above Tc ( ⇐⇒ a little bit
of self-consistency in the single-particle G !).
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The experimental way to measure dn
dµ in

ultra-cold gases (about equilibrium):

• Rely on the Local Density Approximation (LDA):

µ −→ µ(r) − V (r) where V (r) =
1

2
m ω0 r2

• From the density profile n(r) (with r = |r|):

dn(r)

dr
=

dn(r)

dµ(r)

dµ(r)

dr
= −m ω0 r

dn(r)

dµ(r)

where dn(r)
dµ(r) = −χ(homo)

n (n(r),T ) within LDA.

• At the unitary limit (kFaF )−1 = 0, all regions
of the trap share the same coupling !
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The MIT experiment (Zwierlein, 2011)
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• Note how the residual interaction between
fluctuating Cooper pairs above Tc accounts
the virial expansion when T & TF .

• Away from the unitary limit:
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The spin-spin correlation function χzz:

• For the spin response is better to proceed
from T = 0 up to Tc and beyond.

• Let’s begin with the BCS theory for 0 ≤ T ≤ Tc :

χ(BCS)
zz (q) = −1

2

∑
k [G11(k + q) G11(k)

+ G12(k + q) G12(k)]

where q = (q,Ων) and k = (k, ωn) with
ωn = (2n + 1)πkBT (n integer) and

G11(k)↔ normal single-particle propagator

G12(k)↔ anomalous single-particle propagator
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The static limit χs (spin susceptibility):

In the static limit (Yosida - 1958):

lim
q→0

χ(BCS)
zz (q) = −1

2

∫
dk

(2π)3

∂fF (Ek)

∂Ek
−−−→
T→ 0

0

Ek =

√(
k2

2m − µ
)2

+ |∆|2 and fF (E ) = 1
eE/kBT +1

.

This is expected from the fact that Cooper pairs
have spin zero:

BC
S(
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←→ non interacting
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Spin susceptibility beyond BCS:

With the inclusion of pairing fluctuations (t-matrix)
beyond mean field, the normal and anomalous BCS
response diagrams are replaced by the DOS and MT
contributions:
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_

_

k+k’+Q
N.B. The two AL diagrams do not contribute because

their contributions cancel each other!
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· · · and the main message is · · ·
χs → 0 as T → 0 for spin singlets :
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/
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- - - - BCS calculation at unitarity

· · · · · · non-interacting Fermi gas
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Comparison with MIT experiment (Ketterle) at equilibrium & trapped:

Extract χs for the whole trap by resolving the spin fluctuations
[PRL 106, 010402 (2011)]:

〈(N↑ − N↓)
2〉 =

3

2
N

(
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)
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• experimental data (with error bars)
♦ t-matrix calculation for the trap

left data: T/TF = 0.13 ; right data T/TF = 0.19
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However, there is a new MIT experiment [Zwierlein & Co., (2011)]

panel (a): • compressibility χn at unitarity
panel (a): • spin susceptibility χs at unitarity
panel (b): • ratio χs/χn

- - - - - ←→ non-interacting Fermi gas

χs → 6= 0 as T → 0

What’s going on ? ! ?
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First-hand comparison with theory for χs “at equilibrium”:
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In this experiment, χs is obtained for the homogeneous system

via a complicated procedure by making two clouds (one with

spin ↑and the other with spin ↓) to collide against each other:

Difference in column densities of the two clouds taken versus

time at intervals of 1 ms apart (spin ↑, spin ↓).
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Questioning the Zwierlein’s experiment:

• Does this experiment measure an equilibrium
property?

• Or does the system reach some non-equilibrium
regime?

• Has one eventually found a way to avoid the
occupancy of the bound-pair state and obtained
a “repulsive” Fermi gas out of an attractive one?

• This would correspond to the famous Arab
phoenix: “That it exists, everybody agrees,
where it is, nobody knows !”
(Pietro Metastasio, “Demetrio”, 1731)
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The “upper” branch of the Fermi gas:

An attractive interac-

tion reflects itself in

negative value of the

scattering length aF :

When the bound state

sets in aF turns posi-

tive, even though the

inter-particle interaction

is still attractive ⇐⇒
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• aF > 0 refers to the scattering state at threshold,
that feels the presence of the bound state
underneath.

• At equilibrium, the system has had enough time
for pairs to fell into the bound state (with the
help of 3-body forces).

• But what about if pairs do not have this time
and remain unbound at threshold with aF > 0 ?

• We argue that this is precisely what’s happening
in the Zwierlein’s experiment with two bouncing
clouds of opposite spins.
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Interpreting the Zwierlein’s experiment:

Within the t-matrix approach, the bound state appears in the
ladder propagator

Γ0(q, iΩν) = −
∫ +∞

−∞

dω

π

ImΓR
0 (q, ω)

iΩν − ω

where ΓR
0 (q, ω) = Γ0(q, iΩν → ω + iη) (η = 0+).

On the BEC side of the crossover, ImΓR
0 (q, ω) has a delta-like

contribution that corresponds to the bound state plus a
continuum that starts at ωc(q) = q2/(4m)− 2µ for given q.

One would thus expect that, to eliminate the contribution of

the bound state, it would be sufficient to begin the

ω-integration from ωc(q).
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The “quasi-repulsive” regime with aF > 0:

However, it turns out that this is not enough to reproduce the
behavior of a weakly repulsive Fermi gas when (kFaF )−1 � 1.

One has to subtract an additional frequency-independent term

Γrep
0 (p,q, iΩν) = −

∫ +∞

ωc (q)

dω

π

ImΓR
0 (q, ω)

iΩν − ω
− 8π/(maF )

a−2
F + p2

where 2p is the incoming relative wave vector.

N.B. One is familiar with the presence of a similar constant term, for
instance, in the energy dependence of the scattering amplitude for zero
scattering angle [Landau-Lifshitz, Quantum Mechanics, §129]:
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“Quasi-repulsive” gas: Phase diagram
We use the above expression for Γrep

0 to calculate the thermodynamics
and the spin response function of this out-of-equilibrium system.

This approach is valid only on the BEC side of unitarity (0 < (kFaF )−1).

In the T -(kFaF )−1 phase diagram

we identify a “forbidden region”

where it is not possible to solve the

density equation using Γrep
0 :
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“Quasi-repulsive” gas: Chemical potential
For (kFaF )−1 � 1 =⇒ recover the weakly-repulsive Fermi gas (Galitskii):

µ = EF

[
1 +

4

3π
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(wrong sign of the linear term!) [T = 0.1TF ]
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“Quasi-repulsive” gas: Spin susceptibility
Calculate χs using Γrep

0 in the DOS and MT diagrams: [T = 0.1TF ]
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=⇒ our t-matrix reproduces well the results of a truly
repulsive Fermi gas (Galitskii) when (kFaF )−1 & 2
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“Quasi-repulsive” gas: MIT experiment

Assumption: By extrapolating the shape of the spin susceptibility
before it drops at (kFaF )−1 ≈ 2, one should end up by reaching
an “excited configuration” as if an avoided level crossing were

present with a dynamics determined by Landau-Zeener processes:



“Quasi-repulsive” gas: MIT experiment

Assumption: By extrapolating the shape of the spin susceptibility
before it drops at (kFaF )−1 ≈ 2, one should end up by reaching
an “excited configuration” as if an avoided level crossing were

present with a dynamics determined by Landau-Zeener processes:



“Quasi-repulsive” gas: MIT experiment

Assumption: By extrapolating the shape of the spin susceptibility
before it drops at (kFaF )−1 ≈ 2, one should end up by reaching
an “excited configuration” as if an avoided level crossing were

present with a dynamics determined by Landau-Zeener processes:



 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0  2  4  6  8  10

s/
0 s(

0)

(kFaF)-1

t-matrix repulsive

- - - - - fitting function f (x)
· · · · · · fitting function g(x)

[T = 0.2TF ]

f (x) = χ
0
s (T ) +

ap
x2 + b2

+
c

x2 + d2

g(x) = χ
0
s (T )

„
1 +

b x + c

x2 + d x + e

«
[x = (kF aF )−1]

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 1.1
 1.15

 0  2  4  6  8  10

s/
0 s(

0)

(kFaF)-1

 0.53
 0.535

 0.54
 0.545

 0.55
 0.555

 0.56
 0.565

 0.57
 0.575

 0  2  4  6  8  10

s/
0 s(

0)

(kFaF)-1

[T = 0.5TF ] [T = 1.0TF ]



 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0  2  4  6  8  10

s/
0 s(

0)

(kFaF)-1

t-matrix repulsive

- - - - - fitting function f (x)
· · · · · · fitting function g(x)

[T = 0.2TF ]

f (x) = χ
0
s (T ) +

ap
x2 + b2

+
c

x2 + d2

g(x) = χ
0
s (T )

„
1 +

b x + c

x2 + d x + e

«
[x = (kF aF )−1]

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 1.1
 1.15

 0  2  4  6  8  10

s/
0 s(

0)

(kFaF)-1

 0.53
 0.535

 0.54
 0.545

 0.55
 0.555

 0.56
 0.565

 0.57
 0.575

 0  2  4  6  8  10

s/
0 s(

0)

(kFaF)-1

[T = 0.5TF ] [T = 1.0TF ]



 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0  2  4  6  8  10

s/
0 s(

0)

(kFaF)-1

t-matrix repulsive

- - - - - fitting function f (x)
· · · · · · fitting function g(x)

[T = 0.2TF ]

f (x) = χ
0
s (T ) +

ap
x2 + b2

+
c

x2 + d2

g(x) = χ
0
s (T )

„
1 +

b x + c

x2 + d x + e

«
[x = (kF aF )−1]

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 1.1
 1.15

 0  2  4  6  8  10

s/
0 s(

0)

(kFaF)-1

 0.53
 0.535

 0.54
 0.545

 0.55
 0.555

 0.56
 0.565

 0.57
 0.575

 0  2  4  6  8  10

s/
0 s(

0)

(kFaF)-1

[T = 0.5TF ] [T = 1.0TF ]



Comparison with MIT experiment:
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Conclusions:

♣ Time has come when the response functions of ultra-
cold Fermi gases can be measured over an extended
temperature range.

♣ The density fluctuations present bosonic-like features
as T approaches Tc from above.

♣ Spin fluctuations lock in a singlet even well above Tc

(pseudo-spin gap).

♣ Possibly, also the“upper branch” of the Fermi gas has
been excited by an MIT experiment in the attempt to
measure χs .

♣ Recently, new data on the dynamic spin response of a
Fermi gas at low temperature are available, obtained
by Bragg spectroscopy.

♣ Thank you for your attention and best wishes for your

brand new EMMI enterprise !
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Supplemental Material: Bragg
spectroscopy with ultra-cold Fermi atoms

Dynamic spin response of a strongly interacting Fermi gas

S. Hoinka1, M. Lingham1, M. Delehaye1,2, and C. J. Vale1

1Centre for Atom Optics and Ultrafast Spectroscopy,
Swinburne University of Technology, Melbourne 3122, Australia

2Departement de Physique, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris, France
(Dated: March 22, 2012)

We present an experimental investigation of the dynamic spin response of a strongly interacting
Fermi gas using Bragg spectroscopy. By varying the detuning of the Bragg lasers, we show that it is
possible to measure the response in the spin and density channels separately. At low Bragg energies,
the spin response is suppressed due to pairing, whereas the density response is enhanced. These
experiments provide the first independent measurements of the spin-parallel and spin-antiparallel
dynamic and static structure factors and open the way to a complete study of the structure factors
at any momentum. At high momentum the spin-antiparallel dynamic structure factor displays a
universal high frequency tail, proportional to ω−5/2, where �ω is the probe energy.

PACS numbers: 03.75.Hh, 03.75.Ss, 05.30.Fk

Two-component Fermi gases near Feshbach resonances
provide a well controlled setting to explore many-body
phenomena in highly correlated quantum systems [1,
2]. When the interparticle interactions are sufficiently
strong, ultracold atomic gases display universal proper-
ties, where the macroscopic parameters become indepen-
dent of the microscopic details of the interatomic po-
tential [3–5]. Studies to date have primarily focussed
on static aspects of universality [6–10]; however, certain
dynamical properties can also become universal [11–13].
These are encoded in dynamic response functions which
describe the way a system reacts to a perturbation.

Bragg spectroscopy is a well established tool to mea-
sure dynamic and static density response functions [14–
17]. Previous work on Fermi gases has shown that the
static structure factor follows a universal law which arises
from Tan’s relation for the density-density correlator [18].
Several theoretical studies have also investigated the dy-
namic spin response of Fermi gases [13, 19–22] and a re-
cent study of universal spin transport has measured the
static spin susceptibility [23], yet the dynamic spin sus-
ceptibility has not been studied experimentally.

In this letter we present the first measurements of the
dynamic spin response of a strongly interacting Fermi
gas. Two-photon Bragg scattering is used to probe ei-
ther the spin or density response by appropriate choice
of the Bragg laser detuning. This allows full characterisa-
tion of the spin-parallel and spin-antiparallel components
of the dynamic and static structure factors through the
application of the f -sum rule [24, 25]. The spin response
is suppressed at low energies due to pairing and displays
a universal high frequency tail, decaying as ω−5/2 where
�ω is the probe energy (Bragg frequency) [13].

The key to accessing the spin response in two-photon
scattering experiments is to arrange a different Bragg
laser coupling to each of the two spin states in the mix-
ture. This can be achieved using spin-flip Bragg spec-
troscopy [26], polarisation sensitive coupling [27] or by

detuning the Bragg lasers close to resonance. In our ex-
periments with 6Li, the first two methods prove chal-
lenging because of the atomic state configuration at high
magnetic fields, and therefore we use the third method.

To understand our measurements we first review the
atomic level structure of 6Li atoms. Atoms are cooled to
degeneracy in an equal mixture of the two ground states
|F = 1/2, mF = ±1/2� labelled |↑� and |↓�. At the high
magnetic fields, necessary to reach the Feshbach reso-
nance, the electronic and nuclear spins are almost fully
decoupled and atoms undergo transitions which preserve
mI . Both states |↑� and |↓� have electronic angular mo-
mentum mJ = −1/2 which can couple to excited states
with mJ � = 1/2,−1/2 and −3/2. At magnetic fields near
800 G the splitting between states |↑� and |↓�, ω↑↓, is
approximately 80 MHz and the splitting between excited
electronic states is of order 1.5 GHz. Choosing the polar-
isation of the Bragg beams so that only the strongest σ−

transitions are possible (mJ = −1/2 to mJ � = −3/2),
combined with the large Zeeman splitting between ex-
cited states, it is straightforward to isolate one, effectively
closed, atomic transition from each ground state to play
any role in the Bragg process.

In the experiments which follow we work in a regime
where the Bragg lasers are weak enough so that they
do not to not significantly deplete the cloud. We also
generally use a long Bragg pulse such that its Fourier
width is narrow compared to the spectral features being
measured. In this limit the momentum transferred by
the Bragg lasers is proportional to the imaginary part
of the dynamic susceptibility χ��(k, ω) = π[S(k, ω) −
S(−k,−ω)] [15, 21], where S(k, ω) is the dynamic struc-
ture factor. In three-dimensional Fermi gases S(k, ω) de-
pends only on |k| which we label by k, the magnitude of
the probe wavevector.

The perturbation introduced by the Bragg lasers can
be written as the sum of two terms, one which couples to
the total density ρ̂(k) = ρ̂↑(k)+ ρ̂↓(k) and another which
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Comparison with the experimental data
for the spin dynamic structure factor (1):
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Comparison with the experimental data
for the spin dynamic structure factor (2):
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