Static and Dynamic Properties of the Unitary Gas

Michael McNeil Forbes
Institute for Nuclear Theory (INT)
University of Washington, Seattle, WA

Outline

- Dft for Unitary Fermi Gas
 - Static: boxes and traps
 - Dynamics: via linear response and real time dynamics (TDDFT)
- Gross-Pitaevskii–Equation (GPE) to scale up to neutron stars (glitching)

QCD Vacuum Animation: Derek B. Leinweber (http://www.physics.adelaide.edu.au/~dleinweb/VisualQCD/Nobel/index.html)

Neutron Star Structure: (Dany Page) Landscape: (modified from a slide of A. Richter)

QCD Vacuum Animation: Derek B. Leinweber (http://www.physics.adelaide.edu.au/~dleinweb/VisualQCD/Nobel/index.html)

Neutron Star Structure: (Dany Page) Landscape: (modified from a slide of A. Richter)

 Lattice QCD, nucleons, interactions

ATMOSPHERE ENVELOPE

OUTER CORE

- QMC, etc. small to medium nuclei
- DFT, medium to large nuclei
- Neutron stars?Molecular DynamicsHydrodynamics

Application: Vortex Pinning

- Pulsar glitching (neutron stars)
 - Massive vortex unpinning events?

Anderson and Itoh (1975)

- Large scale events (thousands of vortices)
 - Too big for DFT use GPE
- Need Vortex-Defect interactions (force)
 - Use DFT to calculate and then fit GPE

Cold Atoms Benchmarking

- Theoretically clean and simple (universal)
- Well constrained
- Remarkably diverse phase structure
- Convergence of theory, simulation and experiment
- Benchmark for many-body techniques

Unitary Fermi Gas (UFG)

$$\begin{split} \widehat{\mathcal{H}} &= \int \left(\widehat{\mathbf{a}}^{\dagger} \widehat{\mathbf{a}} \mathbf{E}_{a} + \widehat{\mathbf{b}}^{\dagger} \widehat{\mathbf{b}} \mathbf{E}_{b} \right) - g \int_{\Lambda} \widehat{\mathbf{a}}^{\dagger} \widehat{\mathbf{b}}^{\dagger} \widehat{\mathbf{b}} \widehat{\mathbf{a}} \\ \mathbf{E}_{a,b} &= \frac{p^{2}}{2m} - \mu_{a,b}, \quad \mu_{\pm} = \frac{\mu_{a} \pm \mu_{b}}{2} \end{split}$$

- Take regulator $\lambda \to \infty$ and coupling $g \to 0$ to fix s-wave scattering length $\alpha^{-1} \propto (\lambda g^{-1}) = 0$ (unitary limit)
- Universal physics:
 - $\mathcal{E}(\rho) = \overline{\xi \mathcal{E}_{FG}(\rho) \propto \rho^{5/3}}, \ \xi = 0.376(5)$
- Good model of dilute neutron matter in neutron stars

Density Functional Theory (DFT)

• The (exact) ground state density in any external potential V(x) minimizes a functional (Hohenberg Kohn):

$$\int d^3x \{\mathcal{E}[\mathbf{n}(\mathbf{x})] + \mathbf{V}(\mathbf{x})\mathbf{n}(\mathbf{x})\}$$

- Functional may be complicated (non-local)
 - Need to find physically motivated approximations

SLDA: Superfluid Local Density Approximation

$$\mathcal{E}(\mathbf{n}, \tau, \mathbf{v}) = \alpha \frac{\tau}{\mathbf{m}} + \beta \frac{(3\pi^2 \mathbf{n})^{5/3}}{10\mathbf{m}\pi^2} + g_{\text{eff}} \mathbf{v}^{\dagger} \mathbf{v}$$

Three densities:

$$n\approx\langle a^{\dagger}a\rangle$$
, $\tau\approx\langle\nabla a^{\dagger}\nabla a\rangle$, $\nu\approx\langle ab\rangle$

- Three parameters:
 - Effective mass (m/α)
 - Hartree (β) , Pairing (g)

Forbes, Gandolfi, Gezerlis (2012)

BdG: contained in SLDA

$$\mathcal{E}(n,\tau,\nu) = \alpha \frac{\tau}{m} + \beta \frac{(3\pi^2 n)^{5/3}}{10m\pi^2} + g_{\text{eff}} \nu^{\dagger} \nu$$

- Variational: $\mathcal{E} = \langle H \rangle$ (minimize over Gaussian states)
- Bogoliubov-de Gennes (вdg) contained in slda
- Unit mass (α =1)
- No Hartree term $(\beta=0)$
 - (No polaron properties)

SLDA: Superfluid Local Density Approximation

$$\mathcal{E}(\mathbf{n}, \tau, \mathbf{v}) = \alpha \frac{\tau}{\mathbf{m}} + \beta \frac{(3\pi^2 \mathbf{n})^{5/3}}{10\mathbf{m}\pi^2} + g_{\text{eff}} \mathbf{v}^{\dagger} \mathbf{v}$$

Three densities:

$$n\approx\langle a^{\dagger}a\rangle$$
, $\tau\approx\langle\nabla a^{\dagger}\nabla a\rangle$, $\nu\approx\langle ab\rangle$

- Three parameters:
 - Effective mass (m/α)
 - Hartree (β) , Pairing (g)

Forbes, Gandolfi, Gezerlis (2012)

Phase Structure

Based on D.T. Son and M. Stephanov (2005)
P-wave states by A.Bulgac, M.M.Forbes, A.Schwenk PRL 97 020402 (2006)

A 4.5 4.0 3.5 n(μ,Τ)/n₀(μ,Τ) 2.5 3.0 5.0 μ/k_BT

Unitary Equation of State

- Only scales: T and N
 - One convex dimensionless function $h_T(\mu/T)$

$$P = \left[Th_T \left(\frac{\mu}{T} \right) \right]^{5/2}$$

- Measured to percent level:
 - 6(5)

Ku, Sommer, Cheuk, and Zwierlein 2012

SLDA: Fit to QMC using $r_{\text{eff}} = 0$ Extrapolation

$$\mathcal{E}(\mathbf{n}, \tau, \mathbf{v}) = \alpha \frac{\tau}{\mathbf{m}} + \beta \frac{(3\pi^2 \mathbf{n})^{5/3}}{10 \mathbf{m} \pi^2} + g_{\text{eff}} \mathbf{v}^{\dagger} \mathbf{v}$$

- Three parameters, but
- Independent fits of each N
 - (lots of parameters)
- Can we model range?

Forbes, Gandolfi, Gezerlis (2012)

Fit directly to QMC

$$\mathcal{E}(\mathbf{n}, \mathbf{\tau}, \mathbf{v}) = \alpha \frac{\mathbf{\tau}}{\mathbf{m}} + \beta \frac{(3\pi^2 \mathbf{n})^{5/3}}{10\mathbf{m}\pi^2} + g_{\text{eff}} \mathbf{v}^{\dagger} \mathbf{v}$$

- Each parameter becomes a quadratic polynomial:
 - $\alpha(k_F r_e)$, $\beta(k_F r_e)$, $\gamma(k_F r_e)$
- we actually use physical parameters $\xi(k_F r_e)$, $\Delta(k_F r_e)$, $\alpha(k_F r_e)$
- 9 total parameters for all N

Fit directly to QMC

$$\mathcal{E}(\mathbf{n}, \tau, \mathbf{v}) = \alpha \frac{\tau}{\mathbf{m}} + \beta \frac{(3\pi^2 \mathbf{n})^{5/3}}{10m\pi^2} + g_{\text{eff}} \mathbf{v}^{\dagger} \mathbf{v}$$

- Not complete story for modeling range:
 - Does not regulate theory
 - No structure for gap (Δ_p) probably requires non-local functional

Fit slda to box qmc

- Fit 60 QMC with 9 parameter model
- Directly use QMC with sub-percent errors
 - $\chi^2 = 6$

Forbes, Gandolfi, Gezerlis PRL (2011)

SLDA parameters

$$\alpha, \xi, \eta = \alpha_0 + \alpha_1 k_F r_e + \alpha_2 (k_F r_e)^2$$

	a_0	Q1	\mathfrak{a}_2
ξ _{PT}	0.3903(7)	0.121(10)	0.00(3)
	0.3911(4)	0.111(3)	
ξ _{2G}	0.3890(4)	0.128(4)	-0.06(1)
	0.3900(3)	0.111(2)	
η_{PT}	0.99(3)	-2.1(4)	3(1)
	0.90(1)	-0.85(7)	
η _{2G}	0.879(7)	-0.84(3)	0.00(3)
	0.875(8)	-0.82(4)	
α_{PT}	1.34(2)	-1.6(4)	5(2)
	1.303(10)	-0.71(8)	
α_{2G}	1.292(7)	-0.73(6)	0.1(2)
	1.289(7)	-0.69(3)	
	·	·	

Universal slope

$$\xi = \xi + (k_F r_e)S$$

$$S = 0.12(1)$$

Forbes, Gandolfi, Gezerlis (2012)

SLDA parameters

$$\alpha, \xi, \eta = \alpha_0 + \alpha_1 k_F r_e + \alpha_2 (k_F r_e)^2$$

Forbes, Gandolfi, Gezerlis (2012)

	a_0	\mathfrak{a}_1	\mathfrak{a}_2	
ξ_{PT}	0.3903(7)	0.121(10)	0.00(3)	
	0.3911(4)	0.111(3)		
ξ_{2G}	0.3890(4)	0.128(4)	-0.06(1)	
	0.3900(3)	0.111(2)		
η _{PT}	0.99(3)	-2.1(4)	3(1)	
	0.90(1)	-0.85(7)		
η _{2G}	0.879(7)	-0.84(3)	0.00(3)	
	0.875(8)	-0.82(4)		
α_{PT}	1.34(2)	-1.6(4)	5(2)	
	1.303(10)	-0.71(8)		
α_{2G}	1.292(7)	-0.73(6)	0.1(2)	
	1.289(7)	-0.69(3)		

Gap and inverse mass seem too large

Limitation of fixed node approximation?

Unbiased Slda fit

$$\alpha, \xi, \eta = \alpha_0 + \alpha_1 k_F r_e + \alpha_2 (k_F r_e)^2$$

Forbes, Gandolfi, Gezerlis (2012)

N_{+}	ξ_{N_+}	Method
2	-0.415332919 · · ·	exact (see section II C)
4	0.288(3), 0.286(3)	exact diagonalization [18]
"	0.28(1)	AFMC [18]
"	0.280(4)	AFMC [12]
14	0.39(1)	AFMC [12]
38	0.370(5), 0.372(2), 0.380(5)	AFMC [12]
48	0.372(3), 0.367(5)	AFMC [12]
66	0.374(5), 0.372(3), 0.375(5)	AFMC [12]
10 ⁶	0.376(5)	experiment [5]

Fit to unbaised results

•
$$\xi = 0.3742(5)$$

•
$$\Delta = 0.65(1)$$

•
$$\alpha = 1.104(8)$$

•
$$\chi^2 = 0.3$$

Harmonic Traps

First correct asymptotic behaviour

Almost no shell effects

Check Gradient terms

Forbes, Gandolfi, Gezerlis (2012)

SLDA Summary

$$\mathcal{E}(n,\tau,\nu) = \alpha \frac{\tau}{m} + \beta \frac{(3\pi^2 n)^{5/3}}{10m\pi^2} + g_{\text{eff}} \nu^{\dagger} \nu$$

Works remarkably well

Forbes, Gandolfi, Gezerlis (2012)

TDDFT (TDSLDA)

$$\mathfrak{1} \mathfrak{d}_t \Psi_n = \mathsf{H}[\Psi] \Psi_n = \begin{pmatrix} \frac{-\alpha \nabla^2}{2m} - \mu + \mathsf{U} & \Delta^\dagger \\ \Delta & \frac{\alpha \nabla^2}{2m} + \mu - \mathsf{U} \end{pmatrix} \begin{pmatrix} \mathsf{u}_n \\ \mathsf{v}_n \end{pmatrix}$$

- Need to evolve each hundreds of thousands of wavefunctions
- Possible for moderate systems (nuclei) using supercomputers
 - resonances (GDR Stetcu et al. 2012), induced fission
- Probably not for glitching dynamics

GPE model for UFG

$$E[\Psi] = \int d^3\vec{x} \, \left(\frac{|\nabla \Psi(\vec{x})|^2}{4m_F} + V_F(\vec{x})\rho_F + \xi \mathcal{E}(\rho_F, \{\nabla \rho_F\}) \right)$$

$$\imath \vartheta_t \Psi = \left(-\frac{\nabla^2}{4m_F} + 2[V_F + \xi \varepsilon (\rho_F, \{\nabla \rho_F\})] \right) \Psi$$

- Think:
 - Boson = Fermion pair (dimer)
- Galilean Covariant (fixes mass)
- Match Unitary Equation of State

$$\begin{split} \rho_F &= 2|\Psi|^2 \\ \mathcal{E}_{FG} &\propto \rho_F^{5/2} \\ \varepsilon_F &= \mathcal{E}_{FG}'(\rho_F) \propto \rho_F^{3/2} \end{split}$$

GPE model = Extended Thomas Fermi (ETF)

$$E[\Psi] = \int d^3\vec{x} \, \left(\frac{|\nabla \Psi(\vec{x})|^2}{4m_F} + V_F(\vec{x})\rho_F + \mathcal{E}(\rho_F, \{\nabla \rho_F\}) \right)$$

$$\mathcal{E}(\rho_F, \{\nabla \rho_F\}) = \xi \mathcal{E}_{FG}(\rho_F) + \frac{4\lambda - 1}{8m} (\nabla \sqrt{\rho_F})^2$$

- In the absence of currents (i.e. no vortices), kinetic and Weizsäcker terms behave the same
- See Salasnich for a discussion

GPE model for UFG

$$E[\Psi] = \int d^3\vec{x} \, \left(\frac{|\nabla \Psi(\vec{x})|^2}{4m_F} + V_F(\vec{x})\rho_F + \xi \mathcal{E}(\rho_F, \{\nabla \rho_F\}) \right)$$

$$i\partial_t \Psi = \left(-\frac{\nabla^2}{4m_F} + 2[V_F + \xi \varepsilon(\rho_F, \{\nabla \rho_F\})] \right) \Psi$$

- Dynamics are much easier than SLDA
 - Only one wavefunction to evolve
- · Contains superfluid hydrodynamic equations
- Match to low-energy physics

Low Energy Theory

$$\mathcal{L}_{\text{LO+NLO}} = \xi^{-3/2} P_{\text{FG}}(X) + c_1 m^{1/2} \frac{(\nabla X)^2}{\sqrt{X}} + c_2 \frac{(\nabla^2 \phi)^2 - 9m \nabla^2 A_0}{\sqrt{m}} \sqrt{X}$$

$$X = \mu - V(t, \vec{x}) - \partial_t \phi - \frac{(\nabla \phi)^2}{2m} \qquad \langle \alpha b \rangle = |\Delta| e^{2\iota \phi}$$

- Low energy theory of phonons (Son and Wingate 2006)
- Strongly constrained by General Coordinate Covariance
 - generalizes Galilean covariance
 - reduces NLO to 2 new coefficients c1, c2
- Three universal coefficients:
 - ξ, c₁, c₂

Static Response

$$\begin{split} \chi(q) &= \frac{-mk_F}{\pi^2 \xi} \left[1 + 2\pi^2 \sqrt{2\xi} \left(c_1 - \frac{9}{2} c_2 \right) \frac{q^2}{k_F^2} \right] + O(q^4 \ln q), \\ \chi^T(q) &= -9c_2 \sqrt{\frac{\xi}{2}} \nu_F q^2 + O(q^4 \ln q) \end{split}$$

- Epsilon expansion at NLO (Rupak and Schäfer 2007):
 - $c_1 = -0.004776 \ \xi^{-3/2} + O(\epsilon^2)$
 - $\bullet c_2 = 0 + O(\epsilon^2)$
- Asymptotic slope of но trap:

$$\begin{split} \mathsf{E}(\mathsf{N}_{+}) &= \frac{\sqrt{\xi}}{4} \omega (3\mathsf{N}_{+})^{4/3} + \\ &- \sqrt{2} \pi^{2} \xi \left(c_{1} - \frac{9}{2} c_{2} \right) \omega (3\mathsf{N}_{+})^{2/3} \\ &+ \mathsf{O}(\mathsf{N}_{+}^{5/9}) \end{split}$$

Phonon Dispersion

$$\omega_{q} = c_{s} q \left[1 - \pi^{2} \sqrt{2\xi_{S}} \left(c_{1} + \frac{3}{2} c_{2} \right) \frac{q^{2}}{k_{F}^{2}} \right] + O(q^{5} \ln q), \qquad c_{s} = \sqrt{\frac{\xi_{S}}{3}} v_{F}$$

• Different combination than static response if $c_2 \neq 0$

GPE/ETF Model

$$\begin{split} \omega_{q} &= \sqrt{\frac{\xi}{3}} \nu_{F} q \left(1 + \frac{3\lambda\hbar^{2}}{8\xi} \frac{q^{2}}{k_{F}^{2}} + \cdots \right), \quad \chi(\vec{q}) = -\frac{mk_{F}}{\pi^{2}\xi} \left[1 - \frac{3\lambda}{4\xi} \frac{q^{2}}{k_{F}^{2}} + \cdots \right] \\ \lambda &= \frac{-8\pi^{2}\sqrt{2\xi}\xi}{3} c_{1} \end{split}$$

- Has $c_2 = 0$:
- Two Parameters (ξ, λ)
- "natural" λ =0.25
- Salasnich, Toigo (2008)
 fit to Blume

 $(\xi=0.45, \lambda=0.13)$

Gradient Corrections

- In principle, Weizsäcker term is leading gradient correction for SLDA. Will affect slope.
- "natural" λ =0.25 corresponds to no Weizsäcker term
- SLDA has almost the correct slope "built in"
- No need for leading gradient correction?

Matching Theories: The Good

- Galilean Covariance (fixes mass/density relationship)
- Equation of State
- Hydrodynamics
 - speed of sound (exact)
 - phonon dispersion (to order q³)
 - static response (to order q^2)

Matching Theories: The Bad

- GPE has $\rho=2|\Psi|^2$
 - Density vanishes in core of vortex
 - Implies $\int |\Psi|^2$ conserved
 - (Approximate conservation $\int |\Psi|^2$ in Fermi simulations provides measure of applicability)
- No "normal state"
 - Two fluid model needed?
 - Coarse graining (transfer to "normal" component)

Vortex Structure

Comparison

Fermions SLDA TDDFT Gross Pitaevskii model

- Fermions:
- Simulation hard!
- Evolve 10⁴–10⁶ wavefunctions
- Requires supercomputers

Bulgac et al. (Science 2011)

·GPE:

- Simulation much easier!
- Evolve 1 wavefunction
- Use supercomputers to study large volumes

Weisäcker term bad?

Small λ gives bad dynamics

- Vortex lines "frozen"
- singular behaviour at core of vortex?

Best match with SLDA for $\lambda \approx 0.21$

Response from real-time dynamics

Linear Response

Work with Rishi Sharma (TRIUMF)

V=0.05

V=0.05

V=0.05

V=0.05

V=0.05

V=0.05

V=0.05

Application: Vortex Pinning

- Pulsar glitching (neutron stars)
 - Massive vortex unpinning events?

(Anderson and Itoh (1975)

Need Vortex-Defect interactions (force)

Pinning Force

$$\frac{dE}{dt} = -\vec{\mathbf{v}} \cdot \vec{\mathbf{F}}$$

Thermodynamics

- Well defined: (unlike vortex mass)
- Accessible from dynamic simulations
- Extract from stirring simulations

Comparison

Fermions SLDA TDDFT Gross Pitaevskii model

- Fermions:
- Simulation hard!
- Evolve 10⁴–10⁶ wavefunctions
- Requires supercomputers

Bulgac et al. (Science 2011)

·GPE:

- Simulation much easier!
- Evolve 1 wavefunction
- Use supercomputers to study large volumes

Applications

- Fast qualitatively accurate simulation:
 - Design initial conditions and V(t) for experiment and expensive fermion DFT calculations
 - Develop intuition for quantum hydrodynamics
- Framework to attack large-scale simulations
 - Neutron star glitches (vortex depinning?)
 - Multi-scale simulations

Future Work

- Deal with pair-breaking
 - Two fluid model: transfer energy and mass to a normal component
 - Stochastic extensions?
- More flexible model
 - How to get past Galilean invariance?
- Multiscale model matching
 - Is GPE enough?
 - database of vortex/vortex interactions?
 - spawn small fermionic solvers to deal with collisions?

Conclusion

- GPE-like models simply simulate qualitative dynamics of Fermi superfluids
- A feasible solution to model bulk superfluids?

