Improved lattice actions \& operators for non-relativistic fermions

Joaquín E. Drut
Los Alamos National Laboratory

NATIONAL LABORATORY
EST. 1943

Ultracold Gases
 Condensed Matter Physics

Materials Science

High-Energy Physics, QCD, Low-Energy NP

Ultracold Gases
 Condensed Matter Physics

Materials Science

strophysics

y neutron stars)

Ultracold Atoms

The unitary limit

Spin $1 / 2$ fermions, at unitarity

$$
\begin{array}{cc}
r_{0} \rightarrow 0 \ll n^{-1 / 3} \ll|a| \rightarrow \infty \\
\text { of the } & \text { Inter-particle } \\
\text { ction } & \text { distance }
\end{array}
$$

Range of the interaction

The unitary limit

- Spin $1 / 2$ fermions, at unitarity

$$
r_{0} \rightarrow 0 \ll n^{-1 / 3} \ll|a| \rightarrow \infty
$$

Range of the interaction

Inter-particle distance

S-wave scattering length

- As many scales as a free gas!

$$
k_{F}=\hbar\left(3 \pi^{2} n\right)^{1 / 3} \quad \varepsilon_{F}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n\right)^{2 / 3}
$$

- Qualitatively

Every dimensionful quantity should come as a power of ε_{F} times a universal constant/function.

The unitary limit

- Spin $1 / 2$ fermions, at unitarity

$$
r_{0} \rightarrow 0 \ll n^{-1 / 3} \ll|a| \rightarrow \infty
$$

Range of the interaction

Inter-particle distance

S-wave scattering length

- As many scales as a free gas!

$$
k_{F}=\hbar\left(3 \pi^{2} n\right)^{1 / 3} \quad \varepsilon_{F}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n\right)^{2 / 3}
$$

- Qualitatively

Every dimensionful quantity should come as a power of ε_{F} times a universal constant/function.

The unitary limit

- Spin $1 / 2$ fermions, at unitarity
$r_{0} \rightarrow 0 \ll n^{-1 / 3} \ll|a| \rightarrow \infty$

Range of the interaction

Inter-particle distance

S-wave scattering length

- As many scales as a free gas!

$$
k_{F}=\hbar\left(3 \pi^{2} n\right)^{1 / 3} \quad \varepsilon_{F}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n\right)^{2 / 3}
$$

- Qualitatively

Every dimensionful quantity should come as a power of ε_{F} times a universal constant/function.

- Quantitatively ?

The BCS-BEC Crossover

Energy update (ground state)

- Ground state energy per particle

Energy update (finite temperature)

- Finite T equation of state (theory \& experiment)

Experiment: Zwierlein et al. (MIT)

Drut, Lähde, Wlazlowski, Magierski, arXiv:1111.5079

Accepted PRA(R)

Energy update (finite temperature)

- Finite T equation of state (theory \& experiment)

Experiment: Zwierlein et al. (MIT)

Drut, Lähde, Wlazlowski, Magierski, arXiv:1111.5079

Accepted PRA(R)

The Tan relations and the "contact"

Momentum distribution tail

$$
\begin{gathered}
n_{k} \rightarrow C / k^{4} \\
k \rightarrow \infty
\end{gathered}
$$

S. Tan, Annals of Physics 323, 2952 (2008).
E. Braaten and L. Platter, Phys. Rev. Lett. 100, 205301 (2008).

The Tan relations and the "contact"

- Momentum distribution tail

$$
\begin{gathered}
n_{k} \rightarrow C / k^{4} \\
k \rightarrow \infty
\end{gathered}
$$

S. Tan, Annals of Physics 323, 2952 (2008).
E. Braaten and L. Platter, Phys. Rev. Lett. 100, 205301 (2008).
Energy relation

$$
T+U=\sum_{\sigma} \int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}} \frac{\hbar^{2} k^{2}}{2 m}\left(n_{\sigma}(\boldsymbol{k})-\frac{C}{k^{4}}\right)+\frac{\hbar^{2}}{4 \pi m a} C
$$

The Tan relations and the "contact"

- Momentum distribution tail

$$
\begin{array}{cl}
n_{k} \rightarrow C / k^{4} & \begin{array}{l}
\text { S. Tan, Annals of Physics 323, } 2952 \text { (2008). } \\
k \rightarrow \infty
\end{array} \\
& \text { E. Braaten and L. Platter, } \\
& \text { Phys. Rev. Lett. 100, 205301 (2008). }
\end{array}
$$

Energy relation

$$
T+U=\sum_{\sigma} \int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}} \frac{\hbar^{2} k^{2}}{2 m}\left(n_{\sigma}(\boldsymbol{k})-\frac{C}{k^{4}}\right)+\frac{\hbar^{2}}{4 \pi m a} C
$$

- Short distance density-density correlator

$$
\left\langle n_{1}\left(\boldsymbol{R}+\frac{1}{2} \boldsymbol{r}\right) n_{2}\left(\boldsymbol{R}-\frac{1}{2} \boldsymbol{r}\right)\right\rangle \longrightarrow \frac{1}{16 \pi^{2}}\left(\frac{1}{r^{2}}-\frac{2}{a r}\right) \mathcal{C}(\boldsymbol{R})
$$

The Tan relations and the "contact"

- Momentum distribution tail

$$
\begin{array}{cl}
n_{k} \rightarrow C / k^{4} & \text { S. Tan, Annals of Physics 323, } 2952 \text { (2008). } \\
k \rightarrow \infty & \text { E. Braaten and L. Platter, } \\
& \text { Phys. Rev. Lett. 100, 205301 (2008). }
\end{array}
$$

Energy relation

$$
T+U=\sum_{\sigma} \int \frac{\mathrm{d}^{3} k}{(2 \pi)^{3}} \frac{\hbar^{2} k^{2}}{2 m}\left(n_{\sigma}(\boldsymbol{k})-\frac{C}{k^{4}}\right)+\frac{\hbar^{2}}{4 \pi m a} C
$$

- Short distance density-density correlator

$$
\left\langle n_{1}\left(\boldsymbol{R}+\frac{1}{2} \boldsymbol{r}\right) n_{2}\left(\boldsymbol{R}-\frac{1}{2} \boldsymbol{r}\right)\right\rangle \longrightarrow \frac{1}{16 \pi^{2}}\left(\frac{1}{r^{2}}-\frac{2}{a r}\right) \mathcal{C}(\boldsymbol{R})
$$

Adiabatic relation

$$
\mathcal{C}=\frac{4 \pi m a^{2}}{\hbar^{2}} \frac{\mathrm{~d} \mathcal{E}}{\mathrm{~d} a}
$$

Pressure relation

$$
P=2 \varepsilon / 3+C /(12 \pi m a)
$$

Momentum distribution

Theory (lattice)
J. E. Drut, T. A. Lähde, T. Ten

$\mathrm{T} / \mathrm{T}_{\mathrm{F}}=0-0.5$
Plateau seen both in theory and experiment!

What do we know so far?

- Growth at low T
- Decrease at high T
- Maximum around $\mathrm{T} \cong 0.4 \mathrm{~T}_{\mathrm{F}}$

Finite density effects?

- What happens in the crossover?

Virial expansion:

Yu, Bruun \& Baym PRA 80, 023615 (2009)
Hu, Liu, \& Drummond, arXiv:1011.3845

T-matrix: Palestini et al.
PRA 82, 021605 (2010)
Improved T-matrix: Enss et al.
doi 10.1016/j.aop.2010.10.002

Recent technical developments

Dealing with systematic effects

Finite volume
Finite lattice spacing
Induce finite-range effects

In general we have... $\quad p \cot \delta(p)=-\frac{1}{a}+\frac{1}{2} r_{\text {eff }} p^{2}+O\left(p^{4}\right)$.

But we want...

$$
p \cot \delta(p) \equiv 0 \quad \text {... at unitarity }
$$

Dealing with systematic effects

Finite volume
Finite lattice spacing

Related to each other
Induce finite-range effects

In general we have... $\quad p \cot \delta(p)=-\frac{1}{a}+\frac{1}{2} r_{\text {eff }} p^{2}+O\left(p^{4}\right)$.

But we want...
$p \cot \delta(p) \equiv 0 \quad$... at unitarity

Can't do that with only one parameter!
Effective range remains finite!
Point-like interaction $\quad \hat{V} \equiv-g \sum_{i} \hat{n}_{\uparrow, i} \hat{n}_{\downarrow, i}$

Transfer matrix

$$
\mathcal{T} \equiv e^{-\tau \hat{H}} \simeq e^{-\frac{\tau \hat{T}}{2}} e^{-\tau \hat{V}} e^{-\frac{\tau \hat{T}}{2}}+O\left(\tau^{2}\right)
$$

Dealing with systematic effects

We need a "richer" HS transformation

Typically...

Endres et al. multiple papers.

$$
\begin{aligned}
& \mathcal{T}=\int \mathcal{D} \sigma \mathcal{T}_{\uparrow}[\sigma] \mathcal{T}_{\downarrow}[\sigma] \\
& \mathcal{T}_{s}[\sigma]=e^{-\frac{\tau \hat{T}_{s}}{2}} \prod_{i}\left(1+\sqrt{A} \hat{n}_{s, i} \sin \sigma_{i}\right) e^{-\frac{\tau \hat{T}_{s}}{2}}
\end{aligned}
$$

Now...

$$
A(\mathbf{p})=\sum_{n=0}^{N_{\mathcal{O}}-1} C_{n} \mathcal{O}_{n}(\mathbf{p}) \quad \begin{aligned}
& \mathcal{O}_{n}(\mathbf{p})=\left(1-e^{-\mathbf{p}^{2}}\right)^{n} \\
& \mathcal{O}_{n}(\mathbf{p})=[2 \sin (p / 2)]^{2 n}
\end{aligned}
$$

Dealing with systematic effects

Highly improved actions
e.g. using Lüscher's formula $\quad p \cot \delta=\frac{\mathcal{S}(E)}{\pi L}$

Energy eigenvalues
s-wave phase shift

$$
\mathcal{S}(\eta) \equiv \lim _{\Lambda \rightarrow \infty} \sum_{\mathbf{n}} \frac{\Theta\left(\Lambda^{2}-\mathbf{n}^{2}\right)}{\mathbf{n}^{2}-\eta^{2}}-4 \pi \Lambda
$$

$$
\begin{aligned}
\eta & =\frac{p L}{2 \pi} \\
E & =p^{2} / m
\end{aligned}
$$

Dealing with systematic effects

Highly improved actions
e.g. using Lüscher's formula $\quad p \cot \delta=\frac{\mathcal{S}(E)}{\pi L}$

Energy eigenvalues
s-wave phase shift
(scattering experiment information)

$$
\mathcal{S}(\eta) \equiv \lim _{\Lambda \rightarrow \infty} \sum_{\mathbf{n}} \frac{\Theta\left(\Lambda^{2}-\mathbf{n}^{2}\right)}{\mathbf{n}^{2}-\eta^{2}}-4 \pi \Lambda
$$

$$
\begin{aligned}
\eta & =\frac{p L}{2 \pi} \\
E & =p^{2} / m
\end{aligned}
$$

Dealing with systematic effects

Highly improved actions
e.g. using Lüscher's formula $\quad p \cot \delta=\frac{\mathcal{S}(E)}{\pi L}$

Energy eigenvalues
s-wave phase shift
(scattering experiment information)

$$
\mathcal{S}(\eta) \equiv \lim _{\Lambda \rightarrow \infty} \sum_{\mathbf{n}} \frac{\Theta\left(\Lambda^{2}-\mathbf{n}^{2}\right)}{\mathbf{n}^{2}-\eta^{2}}-4 \pi \Lambda
$$

$$
\begin{aligned}
\eta & =\frac{p L}{2 \pi} \\
E & =p^{2} / m
\end{aligned}
$$

Decide what scattering parameters you need

Dealing with systematic effects

- Highly improved actions
e.g. using Lüscher's formula $\quad p \cot \delta=\frac{\mathcal{S}(E)}{\pi L}$

Energy eigenvalues
s-wave phase shift
(scattering experiment information)

$$
\mathcal{S}(\eta) \equiv \lim _{\Lambda \rightarrow \infty} \sum_{\mathbf{n}} \frac{\Theta\left(\Lambda^{2}-\mathbf{n}^{2}\right)}{\mathbf{n}^{2}-\eta^{2}}-4 \pi \Lambda
$$

$$
\begin{aligned}
\eta & =\frac{p L}{2 \pi} \\
E & =p^{2} / m
\end{aligned}
$$

Decide what scattering parameters you need
Tune your Hamiltonian accordingly

Dealing with systematic effects

- Highly improved actions
e.g. using Lüscher's formula $\quad p \cot \delta=\frac{\mathcal{S}(E)}{\pi L}$

Energy eigenvalues in a box (no lattice)
(scattering experiment information)

$$
\mathcal{S}(\eta) \equiv \lim _{\Lambda \rightarrow \infty} \sum_{\mathbf{n}} \frac{\Theta\left(\Lambda^{2}-\mathbf{n}^{2}\right)}{\mathbf{n}^{2}-\eta^{2}}-4 \pi \Lambda
$$

$$
\begin{aligned}
\eta & =\frac{p L}{2 \pi} \\
E & =p^{2} / m
\end{aligned}
$$

Decide what scattering parameters you need
Tune your Hamiltonian accordingly
Profit!

Dealing with systematic effects

- Highly improved actions

Adding more parameters to the transfer matrix and tuning via Lüscher's formula...

Improved transfer matrix

Endres et al. multiple papers.

JED
arXiv:1203.2565

Dealing with systematic effects

- Highly improved actions \& operators

Adding more parameters to the transfer matrix and tuning via Lüscher's formula...

JED
arXiv:1203.2565

Dealing with systematic effects

- Highly improved actions \& operators

Adding more parameters to the transfer matrix and tuning via Lüscher's formula...

A more direct way to the contact...

At $\mathrm{T}=0 . .$.

$$
\frac{\partial E}{\partial a^{-1}}=-\frac{\hbar^{2}}{4 \pi m} C .
$$

At finite T...

$$
\left(\frac{\partial \Omega}{\partial a^{-1}}\right)_{T, \mu}=-\frac{1}{\beta}\left(\frac{\partial \log \mathcal{Z}}{\partial a^{-1}}\right)_{T, \mu}=-\frac{\hbar^{2}}{4 \pi m} C
$$

In both cases we need

$$
\begin{array}{r}
\frac{\partial \mathcal{T}_{2}^{\text {exact }}}{\partial a^{-1}}=-\tau \frac{\partial E_{2}}{\partial a^{-1}} \exp \left(-\tau E_{2}\right) \\
\frac{\partial E_{2}}{\partial a^{-1}}=-\frac{4 \pi^{3}}{L}\left(\frac{d \mathcal{S}}{d \eta^{2}}\right)^{-1}
\end{array}
$$

Results: GS Energy

JED
arXiv:1203.2565

Results: GS Contact

JED
arXiv:1203.2565

Where do we go from here?

- We have implemented these improved actions and operators in our finite-temperature codes.
- We are reassessing our previous calculations in the light of new ones done with these new tools.
- We are simultaneously pursuing the calculation of response functions (specific heat, compressibility, susceptibility, viscosities).

Summary \& conclusions

- Strongly interacting Fermi gases have universal properties
- Studying the universal regime requires non-perturbative numerical approaches such as Quantum Monte Carlo and Lattice QCD-type tools.

Cond-mat, Nucl-th, Hep-th, Hep-lat are all interested in these problems! (again universality)

Summary \& conclusions

- Strongly interacting Fermi gases have universal properties
- Studying the universal regime requires non-perturbative numerical approaches such as Quantum Monte Carlo and Lattice QCD-type tools.
- Cond-mat, Nucl-th, Hep-th, Hep-lat are all interested in these problems! (again universality)
- Much is known (much more than shown here) but much remains to be done! New tools are needed...
- Precise determination of equilibrium and linear-response quantities is largely in its infancy (just a couple of exceptions).

Precision is required to understand the physics, in some cases even qualitatively!

We are entering a "precision" era!

Thank you!

