
Open-shell medium-mass nuclei 
from ab-initio Green’s function calculations

“The Extreme Matter Physics of Nuclei: 
From Universal Properties to Neutron-rich Extremes”

EMMI Program, GSI, 9 May 2012

30

which yields

Σ22 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āēc̄f̄ V̄d̄ḡb̄h̄ G22
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which is evaluated as
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The first of the anomalous self-energy is
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Towards a unified description of nuclei

✤ How to extend to open-shell?

✤ How to link with EDF?
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FIG. 8. Angular momentum dependence for the volume In-
tegrals J!

F = J!
V (EF ) of Σ

∞,!(EF ) excluding the contribution
of the dynamic part of the self-energy. For each !, results for
protons are given by solid diamonds and neutrons by solid
circles. Proton potentials are considerably less attractive due
to the Coulomb energy. When the Coulomb interaction is
suppressed (open diamonds) the proton results are close to
the neutron results. The results shown are for 40Ca using the
AV18 interaction.

gested by the FRPA calculations may actually provide a
handle on describing the nuclear charge density for 40Ca
more accurately than was possible in Ref. [36].
A direct comparison of !-averaged FRPA volume in-

tegrals with the corresponding DOM result is made in
Fig. 10. Since the DOM results are calculated from a
local potential, they must be corrected by the effective
mass that governs non-locality [6, 36], before they can be
compared with the FRPA results, which are generated
from non-local potentials. The overall effect of this cor-
rection is to enhance the absorption. Referring to Fig. 10,
one can see that the FRPA exhibits different behavior
above and below EF than is assumed in the DOM. The
FRPA predicts that there is significantly less absorption
below EF than above, whereas according to the assump-
tions made in a DOM fit, the absorption is roughly sym-
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FIG. 9. Imaginary volume integrals of the volume part of
a DOM self-energy with a local Woods-Saxon form factor re-
placed by a non-local form proposed by Perey and Buck. The
results shown are for ! = 0 (solid), ! = 1 (long-dash), ! = 2
(long-dot-dash), ! = 3 (short-dash) and ! = 4 (short-dot-
dash).
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FIG. 10. The FRPA results for the average over all !-channels
(dashed) are compared with the DOM result (solid), corrected
for non-locality.

metric above and below up to about 50 MeV away from
EF [6, 8–10]. While this assumption is made in the local
version of the DOM, the transition to a non-local imple-
mentation distorts this assumption of symmetry because
the attendant correction involving the effective mass is
different above and below the Fermi energy as can be
seen in Fig. 10. Since only the absorption above the
Fermi energy is strongly constrained by elastic scatter-
ing data, it is encouraging that the !-averaged FRPA
result is reasonably close to the DOM fit for both nuclei
in the domain where the FRPA is expected to be rele-
vant on account of the size of the chosen model space.
The simplifying assumptions of a symmetric absorption
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FIG. 11. Separate partial wave contributions of JW averaged
over !-channels with the same number of harmonic-oscillator
orbits in the model space. This plot is for neutrons in 40Ca.
The dash-double-dotted curve represents the DOM result.

✤ How to calculate reactions?

➟ this talk

➟ link to DME

➟ TD-GF

[Waldecker, Barbieri, Dickhoff 2011]

Introduction Scheme Results Shell structure Summary

Playground and theoretical method of interest

The nuclear Energy Density Functional method

■ Systematic quantum approach to medium/heavy nuclei

■ Addresses both bulk (gs) and spectroscopic properties

■ Relies on empirical parameterizations so far (Skyrme+DDDI, Gogny. . . )

Non-Empirical pairing EDF for nuclei
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➟ link to DOM
[Rios et al. 2011]



State-of-the-art ab-initio nuclear structure theory

✺ Methods for an ab-initio description of medium-mass nuclei

(a) Multi-reference methods: IMSRG + CI, MR-CC, microscopic VS-SM

(b) Single-reference methods: explicit account of pairing mandatory

Dyson-Green’s functions Gorkov-Green’s functions

✺ Truly open-shell nuclei

(2) Coupled-cluster [Dean, Hagen, Hjorth-Jensen, Papenbrock, ...]

(3) In-medium similarity renormalization group [Tsukiyama, Bogner, Schwenk, ...]

(1) Self-consistent Dyson-Green’s function [Barbieri, Dickhoff, ...]

Similar level of accuracy

But limited to to doubly-closed-shell ± 1 and ± 2 nuclei



Dyson Green’s functions

✺ Green’s function
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the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ 〈1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f〉

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc 〈1:ā; 2:b|V NN |1:c̄; 2:d〉 , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd 〈1:ā; 2:̄b|V NN |1:c̄; 2:d̄〉 , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 〉, so-
lution of

H |ΨN
k 〉 = EN

k |ΨN
k 〉 (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ 〈ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 〉 , (11)

Gab(t, t
′) =

∫
dω

2π
e−iω(t−t′) Gab(ω) (12)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (13a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (13b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

Gab = G(0)
ab +

∑

cd

G (0)
ac Σcd Gdb (14)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
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is constituted by the diagrammatic technique. By giv-
ing the interaction and the single-particle propagator a
graphical representation and by establishing a set of rules
one can generate diagrams that are in one-to-one corre-
spondence with the terms appearing in Eqs. (B1). As it
provides an immediate insight on the physical processes
associated to the various terms, the diagrammatic expan-
sion is of great help when choosing a suitable approxima-
tion.
In the present work the antisymmetrized interaction

matrix elements are represented by a dashed line labelled
by four single-particle indices

V̄abcd ≡
c d

a b
. (C1)

Single-particle unperturbed propagators, i.e. the Green’s
functions associated with the unperturbed Hamiltonian
ΩU introduced in Eq. (37), are depicted as solid lines
labelled by two indices and one energy flowing from the
second to the first index

G11 (0)
ab (ω) ≡ ↑ ω

b

a

, (C2a)

G12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (C2b)

G21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (C2c)

G22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (C2d)

With the building blocks (C1) and (C2) one can con-
struct, order by order, the (diagrammatic) perturbative
expansion for each of the four Gorkov propagators (26).
In the expansion of a certain type of propagator, e.g.
G12, the external legs must always be of the same kind,
i.e. G12 lines, while there are no constraints on the in-
ternal connections. To obtain all terms of the expansion

at a certain order m and for a given Gorkov propagator,
the following rules are employed:

1. Draw all topologically distinct connected direct di-
agrams with m horizontal interaction lines (with 4
single-particle indices) and 2m + 1 directed prop-
agation lines (with 2 single-particle indices each,
connecting the 4m indices of the interaction and
the 2 external ones).

c

a

d

b

, (C3a)

c

a

d

b

. (C3b)

Notice that in each interaction line there is explic-
itly track of the fact that there are two incoming
and two outgoing particles, i.e. diagram (C3a) is
allowed while diagram (C3b) is not.

Topologically distinct diagrams are diagrams that
can not be transformed into each other by any
translation (in the two-dimensional plane) of any of
the vertices (without disconnecting or reconnecting
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I. INTRODUCTION

Self-consistent Green’s function (SCGF) methods are
being successfully applied to the study of nuclear sys-
tems. Over the last two decades progress has been made
in the development of suitable formalisms and computa-
tional algorithms both for finite nuclei and infinite nu-
clear matter [1]. In infinite systems, bulk and single-
particle properties are computed through the resum-
mation of particle-particle (pp) and hole-hole (hh) lad-
der diagrams (i.e. in the T-matrix approximation) that
take into account short-range correlations induced by the
hard-core of conventional nucleon-nucleon (NN) inter-
actions. Results have been obtained at zero and finite
temperature for both symmetric and pure neutron mat-
ter based on various conventional NN potentials [2–4].
Recently, microscopic three-nucleon (NNN) forces have
been incorporated [5, 6]. There have been also attempts
to take into account nucleonic superfluidity through the
consistent treatment of anomalous propagators [7, 8].
In finite systems the most advanced SCGF calculations

feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
written as

H ≡ T + V NN + V NNN ≡
∑

ab

tab a
†
aab +

1

(2!)2

∑

abcd

V̄ NN
abcd a†aa

†
badac +

1

(3!)2

∑

abcdef

V̄ NNN
abcdef a

†
aa

†
ba

†
cafaead (2)

where a†a (aa) is the creation (annihilation) operator of a
particle in the single-particle state a,

tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ 〈1:a; 2:b|V NN |1:c; 2:d〉

≡ (1:a; 2:b|V NN |1:c; 2:d)
− (1:a; 2:b|V NN |1:d; 2:c) (4)

➟ One nucleon addition and 
    removal (N±1 systems)

➟ N-particle ground state

✺ Dyson equation
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the antisymmetrized matrix element of V NN expanded
in terms of direct-product state matrix elements, denoted
by |1, 2). The antisymmetrization of the NNN potential
can be carried out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ 〈1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f〉

≡ (1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f)
= (1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f)
− (1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d)
− (1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e)
+ (1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d)
+ (1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e) . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb (1:ā|Tkin|1:b̄) , (7)

V̄ NN
ābc̄d ≡ ηa ηc 〈1:ā; 2:b|V NN |1:c̄; 2:d〉 , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd 〈1:ā; 2:̄b|V NN |1:c̄; 2:d̄〉 , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 〉, so-
lution of

H |ΨN
k 〉 = EN

k |ΨN
k 〉 (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

i Gab(t, t
′) ≡ 〈ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 〉 , (11)

Gab(t, t
′) =

∫
dω

2π
e−iω(t−t′) Gab(ω) (12)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

ab(t) = a(H)
b (t) ≡ exp[iHt] ab exp[−iHt] , (13a)

a†b(t) =
[

a(H)
b (t)

]†

≡ exp[iHt] a†b exp[−iHt] . (13b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators plus the two-body
ground-state energy, i.e. the expectation value of the
Hamiltonian if only two-body forces are considered. One
can define two-, three-, ..., N -particle propagators in a
similar way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

Gab(ω) = G(0)
ab (ω) +

∑

cd

G (0)
ac (ω)Σ"

cd(ω)Gdb(ω) (14)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.

✺ Spectral function

Figure 1. First- and second-order contributions to the normal self-energy ⇥11.

Figure 2. First- and second-order contributions to the anomalous self-energy ⇥21.

3. Results
The knowledge of the single-particle propagator gives access not only to the total energy and to
all one-body observable of the targeted A-body ground state but also to one-nucleon separation
energies and spectroscopic amplitudes to eigenstates of A± 1 systems. In order to retrieve the
spectroscopic content of the one-body Gorkov Green’s function it is convenient to express it in
its so-called spectral or Lehmann representation [7, 4]
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a X
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a Yk
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k � µ� i⇥
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, (6)

with Xk†
a ⇥ ⌅⇤k|A†

a|⇤0⇧, Ya ⇥ ⌅⇤k|Aa|⇤0⇧ and where E±
k represent one-nucleon addition and

removal separation energies. A pole’s position and residue of the Gorkov propagator therefore
carry information respectively on the separation energies to A ± 1 systems excited states and
the spectroscopic amplitudes associated with such states.

The same information is contained in the spectral function Sa(⇧) = S+
a (⇧) + S�

a (⇧), where
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with E±
k ⇤ 0. The normal spectral function S11a (⇧) can be interpreted as a generalized

probability density for adding or removing a nucleon with quantum numbers a to the ground
state while leaving the A± 1 system with (relative) energy ⇧.

In Fig. 3 results for the normal neutron spectral function S11a (⇧) in 40Ca and 44Ca are
shown for two di⌅erent truncations of the self-energy expansion, i.e. at first and second
order, respectively. Calculations are performed using the � = 500 MeV chiral two-nucleon
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FIG. 1: (Color online) Left. One of the diagrams included in the correlated self-energy, Σ̃(ω). Arrows up (down) refer to quasiparticle
(quasihole) states, the Π(ph) propagators include collective ph and charge-exchange resonances, and the gII include pairing between two
particles or two holes. The FRPA method sums analogous diagrams, with any numbers of phonons, to all orders [21, 25]. Right. Single-
particle spectral distribution for neutrons in 56Ni, obtained from FRPA. Energies above (below) EF are for transitions to excited states of
57Ni (55Ni). The quasiparticle states close to the Fermi surface are clearly visible. Integrating over r [Eq. (4)] gives the SFs reported in Tab. I.

poles give the experimental energy transfer for nucleon pickup
(knockout) to the excited states of the systems with A+1 (A-1)
particles. The propagator (2) is obtained by solving the Dyson
equation [g(ω) = g(0)(ω) + g(0)(ω) Σ"(ω) g(ω)], where
g(0)(ω) propagates a free nucleon. The information on nuclear
structure is included in the irreducible self-energy, which was
split into two contributions:

Σ"(r, r′;ω) = ΣMF (r, r′;ω) + Σ̃(r, r′;ω) . (3)

The term ΣMF (ω) includes both the nuclear mean field (MF)
and diagrams describing two-particle scattering outside the
model space, generated using a G-matrix resummation [24].
As a consequence, it acquires an energy dependence which
is induced by SRC among nucleons [23]. The second term,
Σ̃(ω), includes the LRC. In the present work, Σ̃(ω) is calcu-
lated in the so-called Faddeev random phase approximation
(FRPA) of Refs. [21, 25]. This includes diagrams for particle-
vibration coupling at all orders and with all possible vibration
modes, see Fig. 1, as well as low-energy 2p1h/2h1p configu-
rations. Particle-vibration couplings play an important role in
compressing the single-particle spectrum at the Fermi energy
to its experimental density. However, a complete configura-
tion mixing of states around the Fermi surface is still missing
and would require SM calculations.
Each spectroscopic amplitude ψA±1(r) appearing in Eq. (2)

has to be normalized to its respective SF as

Zα =
∫

dr |ψA±1α (r)|2 = 1

1 − ∂Σ"
α̂α̂
(ω)

∂ω

∣

∣

∣

∣

∣

∣

∣

∣

ω=±(EA±1α −EA0 )

, (4)

where Σ"
α̂α̂
(ω) ≡< ψ̂α|Σ

"(ω)|ψ̂α > is the matrix element of
the self-energy calculated for the overlap function itself but
normalized to unity (

∫

dr |ψ̂α(r)|2 = 1). By inserting Eq. (3)
into (4), one distinguishes two contributions to the quenching
of SFs. For model spaces sufficiently large, all low-energy
physics is described by Σ̃(ω). Then, the derivative of ΣMF (ω)

accounts for the coupling to states outside the model space
and estimates the effects of SRC alone [33].
In general, the SC self-energy (3) is a functional of the one-

body propagator itself, Σ" = Σ"[g]. Hence the FRPA equa-
tions for the self-energy and the Dyson equation have to be
solved iteratively. The mean-field part, ΣMF [g], was calcu-
lated exactly in terms of the fully fragmented propagator (2).
For the FRPA, this procedurewas simplified by employing the
Σ̃[gIPM] obtained in terms of a MF-like propagator

gIPM(r, r′;ω) =
∑

n /∈F

(φn(r))∗ φn(r′)
ω − εIMPn + iη

+
∑

k∈F

φk(r) (φk(r′))∗

ω − εIMPk − iη
,

(5)
which is updated at each iteration to approximate Eq. (2) with
a limited number of poles. Eq. (5) defines a set of undressed
single-particle states that can be taken as a basis for SM ap-
plications. This feature will be used below to estimate the im-
portance of configuration mixing effects on the quenching of
spectroscopic factors. The present calculations employed the
N3LO interaction from chiral perturbation theory [26] with a
modification of the tensor monopoles to correct for missing
three-nucleon interactions [27].
Results.— The calculated single-particle spectral function

[S 56Ni(r,ω) = 1
π
|g(r = r′;ω)|2] is shown in Fig. 1 for the case

of neutron transfer on 56Ni. This picture puts in evidence the
quasiparticle and quasihole states associated with valence or-
bits in the 0p1 f shell. The corresponding SFs are reported
in Tab. I, including both protons and neutrons. The first col-
umn is obtained by including only the derivative of ΣMF (ω)
when calculating Eq. (4). Since N3LO is rather soft com-
pared to other realistic interactions the effect of SRC is rela-
tively small. From other models one could expect a quenching
up to about 10% [16], as confirmed by recent electron scatter-
ing experiments [14, 15, 28]. This difference would not affect
sensibly the conclusions below. The complete FRPA result for
SFs is given in the second column. For the transition between
the 56Ni and 57Ni ground states, our result agrees with knock-

Solution breaks down when 
pairing instabilities appear
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antisymmetrization of the NNN potential can be carried
out by introducing the operator

A123 ≡ (1 + P12 P23 + P13 P23)(1− P23)

= 1− P12 − P13 − P23 + P12 P23 + P13 P23 , (5)

where P12 exchanges nucleons 1 and 2, such that an an-
tisymmetrized matrix element reads

V̄ NNN
abcdef ≡ 〈1:a; 2:b; 3:c|V NNNAdef |1:d; 2:e; 3:f〉

= 〈1:a; 2:b; 3:c|V NNN |1:d; 2:e; 3:f〉
− 〈1:a; 2:b; 3:c|V NNN |1:e; 2:d; 3:f〉
− 〈1:a; 2:b; 3:c|V NNN |1:f ; 2:e; 3:d〉
− 〈1:a; 2:b; 3:c|V NNN |1:d; 2:f ; 3:e〉
+ 〈1:a; 2:b; 3:c|V NNN |1:e; 2:f ; 3:d〉
+ 〈1:a; 2:b; 3:c|V NNN |1:f ; 2:d; 3:e〉 . (6)

Every time an index x̄ appears in a matrix element (3),
(4) or (6), the associated annihilation (creation) operator
is to be intended of the form (1), i.e. āx (ā†x). It follows
that

tāb̄ ≡ ηa ηb 〈1:ā|Tkin|1:b̄〉 , (7)

V̄ NN
ābc̄d ≡ ηa ηc 〈1:ā; 2:b|V NN |1:c̄; 2:d〉

− ηa ηc 〈1:ā; 2:b|V NN |1:d; 2:c̄〉 , (8)

V̄ NN
āb̄c̄d̄ ≡ ηa ηb ηc ηd 〈1:ā; 2:̄b|V NN |1:c̄; 2:d̄〉

− ηa ηb ηc ηd 〈1:ā; 2:̄b|V NN |1:d̄; 2:c̄〉 , (9)

etc.

C. Treatment of three-body forces

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the ground state of the system de-
scribed by the Hamiltonian (2), denoted by |ΨN

0 〉, so-
lution of

H |ΨN
k 〉 = EN

k |ΨN
k 〉 (10)

with the lowest eigenvalue EN
0 . The fundamental object

of Green’s function theory is the single-particle propaga-
tor, defined as

iG(N,N)
ab (t, t′) ≡ 〈ΨN

0 |T
{

aa(t)a
†
b(t

′)
}

|ΨN
0 〉 , (11)

where the operator T orders a and a† according to their
time argument (larger times to the left) and where an-
nihilation and creation operators are in the Heisenberg
representation

aa(t) = a(H)
a (t) ≡ exp[iHt] aa exp[−iHt] , (12a)

a†a(t) =
[

a(H)
a (t)

]†

≡ exp[iHt] a†a exp[−iHt] . (12b)

The knowledge of G enables us to compute expecta-
tion values of all one-body operators and some two-body
quantities such as the ground-state energy. One can de-
fine two-, three-, ..., N -particle propagators in a similar
way, to evaluate up to N -nucleon observables.
The equations of motion for the Green’s functions take

the form of a set of N coupled integro-differential equa-
tions, each of them involving the (i− 1)-, i- and (i + 1)-
particle propagators. In order to compute the single-
particle propagator one can as well derive a perturbative
expansion, which translates into an infinite series of di-
agrams and has the advantage of providing systematic
ways of approximating the solution. The connection be-
tween the diagrammatic expansion and the equation of
motion for G leads to the definition of the (irreducible)
self-energy Σ and the derivation of Dyson’s equation

G(N,N)
ab = G(N,N) (0)

ab +
∑

cd

G(N,N) (0)
ac Σcd G(N,N)

db , (13)

where G(0) is the single-particle propagator in the unper-
turbed system defined by a one-body Hamiltonian H0 of
choice.
The scheme is in principle exact (i.e. if one could

compute the perturbative expansion up to infinite order)
and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (14)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one

✺ Auxiliary many-body state
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considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (15)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (16)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (17)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (18)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (19)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (20a)

i G12
ab(t, t

′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (20b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0〉 , (20c)

i G22
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉 , (20d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (21a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (21b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through

Eq. (14), Gorkov propagators can be expressed as linear
combinations of Green’s functions in the systems with
N,N ± 2, N ± 4, ... particles in the case of G11 and G22

G11
ab(t, t

′) = −i 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉

= −i
even
∑

N

c∗NcN 〈ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

≡
even
∑

N

c∗NcN G11 (N,N)
ab (t, t′) , (22)

G22
ab(t, t

′) = −i 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉

= −i
even
∑

N

c∗NcN 〈ψN
0 |T

{

ā†a(t)āb(t
′)
}

|ψN
0 〉

≡
even
∑

N

c∗NcN G22 (N,N)
ab (t, t′) , (23)

and as a linear combination of pair propagators between
the ground states of (N±2, N), (N±4, N±2), ... systems
in the case of G12 and G21

G12
ab(t, t

′) = −i 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉

= −i
even
∑

N

c∗N−2cN 〈ψN−2
0 |T {aa(t)āb(t′)} |ψN

0 〉

≡
even∑

N

c∗N−2cN G12 (N−2,N)
ab (t, t′) , (24)
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with µ being the chemical potential and N the particle-
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chosen to minimize
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i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition
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determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
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and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
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problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (19)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (20a)

i G12
ab(t, t

′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (20b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0〉 , (20c)

i G22
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉 , (20d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (21a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (21b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through

Eq. (14), Gorkov propagators can be expressed as linear
combinations of Green’s functions in the systems with
N,N ± 2, N ± 4, ... particles in the case of G11 and G22
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aa(t)a
†
b(t

′)
}
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= −i
even
∑

N

c∗NcN 〈ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

≡
even
∑

N

c∗NcN G11 (N,N)
ab (t, t′) , (22)

G22
ab(t, t

′) = −i 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉

= −i
even
∑

N

c∗NcN 〈ψN
0 |T

{

ā†a(t)āb(t
′)
}

|ψN
0 〉

≡
even
∑

N
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ab (t, t′) , (23)

and as a linear combination of pair propagators between
the ground states of (N±2, N), (N±4, N±2), ... systems
in the case of G12 and G21

G12
ab(t, t

′) = −i 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉

= −i
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∑

N

c∗N−2cN 〈ψN−2
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0 〉

≡
even∑

N
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ab (t, t′) , (24)

Introduce a “grand-canonical” potential
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tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (15)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (16)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (17)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (18)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or

removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill
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a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
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and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.

minimizes

under the constraint

✺ Formulate the expansion scheme around a Bogoliubov vacuum

Mixes various particle numbers

Zeroth order already incorporates pairing



Gorkov Green’s functions and equations

✺ Set of 4 Green’s functions

[Gorkov 1958]

35

are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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I. INTRODUCTION

Self-consistent Green’s function (SCGF) methods are
being successfully applied to the study of nuclear sys-
tems. Over the last two decades progress has been made
in the development of suitable formalisms and computa-
tional algorithms both for finite nuclei and infinite nu-
clear matter [1]. In infinite systems, bulk and single-
particle properties are computed through the resum-
mation of particle-particle (pp) and hole-hole (hh) lad-
der diagrams (i.e. in the T-matrix approximation) that
take into account short-range correlations induced by the
hard-core of conventional nucleon-nucleon (NN) inter-
actions. Results have been obtained at zero and finite
temperature for both symmetric and pure neutron mat-
ter based on various conventional NN potentials [2–4].
Recently, microscopic three-nucleon (NNN) forces have
been incorporated [5, 6]. There have been also attempts
to take into account nucleonic superfluidity through the
consistent treatment of anomalous propagators [7, 8].
In finite systems the most advanced SCGF calculations

feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
written as

H ≡ T + V NN + V NNN ≡
∑

ab

tab a
†
aab +

1

(2!)2

∑

abcd

V̄ NN
abcd a†aa

†
badac +

1

(3!)2

∑

abcdef

V̄ NNN
abcdef a

†
aa

†
ba

†
cafaead (2)

where a†a (aa) is the creation (annihilation) operator of a
particle in the single-particle state a,

tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ 〈1:a; 2:b|V NN |1:c; 2:d〉

≡ (1:a; 2:b|V NN |1:c; 2:d)
− (1:a; 2:b|V NN |1:d; 2:c) (4)
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feature the Faddeev random-phase approximation tech-
nique, which allows the simultaneous inclusion of pp and
ph excitations, together with a G-matrix resummation
of short-range correlations [9, 10]. At the moment, ap-
plications can access all doubly-magic nuclei up to 56Ni
[11].
In the present work SCGF calculations of finite nuclei

are implemented within a Gorkov scheme, allowing in this
way for a treatment of nucleonic superfluidity. Suitable
numerical techniques are developed in order to perform
systematic calculations of doubly-magic and semi-magic
medium-mass nuclei. One of the goals is to be able to
tackle various types of nuclear interactions, in particu-
lar in view of the recent progress involving chiral poten-
tials based on effective field theory (EFT) [12] and low-
momentum potentials obtained through the further ap-
plication of renormalization group (RG) techniques [13].
The present work also relates to the long-term devel-

opment of so-called non-empirical energy density func-
tionals (EDFs) [14–16]. There exist on-going efforts to
construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the pre-
dictive power of the method away from known data that
is rather poor for existing phenomenological EDFs. The
connection with NN and NNN interactions is typically
obtained by means of density matrix expansion (DME)
techniques and many-body perturbation theory, which
allow for the construction of schemes that can be system-

atically tested and improved order by order in the inter-
action [17–21]. In this regard, recent developments and
applications of low-momentum potentials [22–24], which
seem to exhibit a perturbative nature, are instrumental.
Such schemes towards non-empirical EDFs, however, are
presently available only in their first stages. Their devel-
opment necessitates a comparison with fully microscopic
methods that can provide useful benchmarks over which
the EDFs approaches can be tested and improved. In
this context, SCGF techniques represent a valid ab-initio
method of reference. In particular, as the breaking and
restoration of symmetries (particle number, rotational,
...) is central to nuclear EDF methods, it is crucial to de-
velop a SCGF approach that includes and exploits such
concepts [25].

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce a notation for labeling single-
particle states that will be used throughout the work.
Any basis {a†a} of the one-body Hilbert space H1 can
be divided into two blocks according to the value (or
more precisely to the sign) of an appropriate quantum
number. To any state a belonging to the first block,
one can associate a single-particle state ā belonging to
the second block and having the same quantum numbers
as a, except for the one differentiating the two blocks.
For example one may use an anti-unitary transformation
connecting, up to a phase, the state a with the state ā.
With that in mind one can define, in addition to {a†a}, a
dual basis {ā†a} through

ā†b(t) ≡ ηba
†

b̄
(t) , āb(t) ≡ ηbab̄(t) , (1)

which correspond to exchanging the state b by its part-
ner b̄ up to the phase ηb̄. By convention ¯̄a = a with
ηa ηā = − 1.

B. Hamiltonian

Let us consider a finite system of N fermions interact-
ing via two- and three-body potentials V NN and V NNN

respectively. The corresponding Hamiltonian can be
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where a†a (aa) is the creation (annihilation) operator of a
particle in the single-particle state a,

tab ≡ (1:a|Tkin|1:b) (3)

is the matrix element of the kinetic energy operator Tkin

and

V̄ NN
abcd ≡ 〈1:a; 2:b|V NN |1:c; 2:d〉

≡ (1:a; 2:b|V NN |1:c; 2:d)
− (1:a; 2:b|V NN |1:d; 2:c) (4)
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
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and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 〉 of
the system, one considers a symmetry breaking state |Ψ0〉
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (20)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0〉 is
chosen to minimize

Ω0 = 〈Ψ0|Ω|Ψ0〉 (21)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (22)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(21), together with the normalization condition

〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (23)

determines coefficients cN , while Eq. (22) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the

ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (24)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (25)

which follows from Eqs. (21) and (24).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0〉, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ 〈Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0〉 , (26a)

i G12
ab(t, t

′) ≡ 〈Ψ0|T {aa(t)āb(t′)} |Ψ0〉 , (26b)

i G21
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0〉 , (26c)

i G22
ab(t, t

′) ≡ 〈Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0〉 , (26d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
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ā†a(t)āb(t
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where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
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and approximations are introduced by including only a
certain class or subset of terms in the computation of
the self-energy, chosen according to the hierarchies be-
tween the various types of diagrams, depending on the
system considered. The validity of the standard per-
turbative expansion, however, is not always guaranteed.
This is true in particular for nuclear interactions that in-
duce strong pairing correlations between the constituents
of the many-body system, making the usual expansion
inappropriate for the large majority of existing nuclei.
The breakdown of the perturbative expansion is signaled
by the appearance of (Cooper) instabilities, which occur
when summing up certain classes of diagrams and point
out the necessity of developing an alternative diagram-
matic method.

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
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fashion for the appearance and destruction of condensed
nucleonic pairs.
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0 〉 of
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defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0〉 ≡
even
∑

N

cN |ψN
0 〉 , (20)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
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Ω0 = 〈Ψ0|Ω|Ψ0〉 (21)

under the constraint

N = 〈Ψ0|N |Ψ0〉 , (22)

i.e. it is not an eigenstate of the particle number operator
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〈Ψ0|Ψ0〉 =
even
∑

N

|cN |2 = 1 , (23)

determines coefficients cN , while Eq. (22) fixes the chem-
ical potential µ.
By choosing |Ψ0〉 as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the

ground state of the system. The presence of a condensate
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... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (24)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
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∑
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0 ≈ EN
0 − µN , (25)

which follows from Eqs. (21) and (24).

C. Gorkov propagators
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as Gorkov propagators [27]
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where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (27a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (27b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
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a second particle created in the block of b (annihilated
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are irreducible by definition. An example at second or-
der is given by the two diagrams (C14): the first term
(C14a) is a skeleton diagram while the second self-energy
contribution (C14b) can be generated by two successive
insertions of the first-order term (C13b).

↑ ω′ ↑ ω′′

j g

↓ ω′′′

i f

d

c

h

e

, (C14a)

c i e g
↓ ω′

← ω′′

d j f h

→ ω′′′

.(C14b)

After this distinction one can work out that the com-
plete propagators expansion can be generated by keep-
ing only irreducible skeleton self-energy diagrams and by
substituting in such diagrams all unperturbed propaga-
tors with dressed ones. Dressed propagators are Green’s
functions that are solution of Gorkov’s equations: their
appearance in the self-energy expansion generates the
self-consistency characterizing the method.
It follows that only irreducible skeleton self-energy di-

agrams with dressed or interacting propagators have to
be computed. Single-particle dressed propagators are de-
picted as solid double lines and are labelled by two indices

and an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C15a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C15b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C15c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C15d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C15) have
to be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω′ ,

(C16)
and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C17)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the

Gorkov equations
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normal and anomalous irreducible self-energies. Working
in the energy representation the latter read

Σ̃ab(ω) ≡





Σ̃11
ab(ω) Σ̃12

ab(ω)

Σ̃21
ab(ω) Σ̃22

ab(ω)



 , (33)

which can be divided into a proper part and a contribu-
tion coming from the auxiliary potential, i.e.

Σ̃ab(ω) ≡ Σab(ω)−Uab . (34)

Finally, Dyson’s equation is generalized as set of coupled
equations involving the two types of propagators and self-
energies. These are known as Gorkov equations [27] and
read, in Nambu’s notation,

Gab(ω) = G
(0)
ab (ω)+

∑

cd

G
(0)
ac (ω)Σ

!
cd(ω)Gdb(ω) . (35)

As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
single-particle normal and anomalous Green’s functions
in terms of unperturbed ones.
If the method is self-consistent, the final result does

not depend on the choice of the auxiliary potential, which
disappears from the equations once the propagators are
dressed with the corresponding self-energies. From a
practical point of view it is useful to track where the aux-
iliary potential enters and how its cancellation is eventu-
ally worked out. This is addressed in Section VA, where
the solution of Gorkov’s equations is discussed. In partic-
ular, and since such a solution is to be found through an
iterative procedure, one is however interested in choosing
a good auxiliary potential as a starting point.
Let us further remark that, as the auxiliary potential

(30) has a one-body character, i.e. it acts as a mean

field, the search for the ground state of ΩU will corre-
spond to the solution of a Bogoliubov-like problem, as
becomes evident if writing the unperturbed grand poten-
tial in matrix form

[ΩU ]ab =

(

tab − µab + Uab Ũ †
ab

Ũab −tab + µab − Uab

)

. (36)

In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
problem and then uses the resulting propagators GHFB

ab
as the unperturbed ones. Notice that the self-energy
corresponding to this solution, ΣHFB , eventually differs
from the first-order self-energy Σ(1) if higher orders are
included in the calculation because of the associated self-
consistent dressing of the one-body propagator.

IV. LEHMANN REPRESENTATION

A. Exact form

In view of obtaining a form of Gorkov’s equations
that is suitable for their numerical implementation, one
wishes to derive a Lehmann representation of the dressed
Green’s functions.
Let us first consider the case of normal propagators

and take G11 as an example. Substituting Eq. (15)
into Eq. (21a) and expressing the creation and annihila-
tion operators in the Schrödinger representation (see Eq.
(22)), one obtains (here and in the following all sums over
N,N ′, ... etc. are assumed to contain only even values,
unless stated otherwise)

G11
ab(t, t

′) = −i
∑

NN ′

c∗N ′cN 〈ψN ′

0 |T
{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

= −i
∑

N

c∗NcN〈ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 〉

= −iθ(t− t′)
∑

N

|cN |2〈ψN
0 |aa(t)a†b(t

′)|ψN
0 〉+ iθ(t′ − t)

∑

N

|cN |2〈ψN
0 |a†b(t

′)aa(t)|ψN
0 〉

= −iθ(t− t′)
∑

N

|cN |2 ei(E
N
0 −µN)te−i(EN

0 −µN)t′ 〈ψN
0 |aa e−iΩ(t−t′) a†b|ψ

N
0 〉

+ iθ(t′ − t)
∑

N

|cN |2 ei(E
N
0 −µN)t′e−i(EN

0 −µN)t 〈ψN
0 |a†b e

iΩ(t−t′) aa|ψN
0 〉 . (37)

The complete set of eigenstates of Ω in Fock space is now inserted twice and the corresponding eigenvalues when
acting with the exponential are substituted. Due to the number N in the external bra and ket, only the contributions
with N + 1 (N − 1) particles survives in the first (second) completeness relationship, such that

Ω|ψN±1
k 〉 = [H − µN ]|ψN±1

k 〉
= [EN±1

k − µ(N ± 1)]|ψN±1
k 〉 (38)
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As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
single-particle normal and anomalous Green’s functions
in terms of unperturbed ones.
If the method is self-consistent, the final result does

not depend on the choice of the auxiliary potential, which
disappears from the equations once the propagators are
dressed with the corresponding self-energies. From a
practical point of view it is useful to track where the aux-
iliary potential enters and how its cancellation is eventu-
ally worked out. This is addressed in Section VA, where
the solution of Gorkov’s equations is discussed. In partic-
ular, and since such a solution is to be found through an
iterative procedure, one is however interested in choosing
a good auxiliary potential as a starting point.
Let us further remark that, as the auxiliary potential

(30) has a one-body character, i.e. it acts as a mean

field, the search for the ground state of ΩU will corre-
spond to the solution of a Bogoliubov-like problem, as
becomes evident if writing the unperturbed grand poten-
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(
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ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
problem and then uses the resulting propagators GHFB
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as the unperturbed ones. Notice that the self-energy
corresponding to this solution, ΣHFB , eventually differs
from the first-order self-energy Σ(1) if higher orders are
included in the calculation because of the associated self-
consistent dressing of the one-body propagator.

IV. LEHMANN REPRESENTATION

A. Exact form

In view of obtaining a form of Gorkov’s equations
that is suitable for their numerical implementation, one
wishes to derive a Lehmann representation of the dressed
Green’s functions.
Let us first consider the case of normal propagators

and take G11 as an example. Substituting Eq. (15)
into Eq. (21a) and expressing the creation and annihila-
tion operators in the Schrödinger representation (see Eq.
(22)), one obtains (here and in the following all sums over
N,N ′, ... etc. are assumed to contain only even values,
unless stated otherwise)
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The complete set of eigenstates of Ω in Fock space is now inserted twice and the corresponding eigenvalues when
acting with the exponential are substituted. Due to the number N in the external bra and ket, only the contributions
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with N + 1 (N − 1) particles survives in the first (second) completeness relationship, such that

Ω|ψN±1
k 〉 = [H − µN ]|ψN±1

k 〉
= [EN±1

k − µ(N ± 1)]|ψN±1
k 〉 (38)



1st & 2nd order diagrams and eigenvalue problem

34

pearance in the self-energy expansion generates the self-
consistency characterizing the method.
It follows that only irreducible self-energy diagrams

with dressed or interacting propagators have to be com-
puted. Single-particle dressed propagators are depicted
as solid double lines and are labelled by two indices and
an energy as the unperturbed ones, i.e.

G11
ab(ω) ≡ ↑ ω

b

a

, (C9a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (C9b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (C9c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (C9d)

The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C9) have to
be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab =

b

c

d

a
↓ ω′ , (C10)

and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C11)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
convention introduced in Rule 6. Inserting the Lehmann
form (54a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C12)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C13)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C14)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab =

b̄

← ω′

a
c d̄

, (C15)
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pearance in the self-energy expansion generates the self-
consistency characterizing the method.
It follows that only irreducible self-energy diagrams

with dressed or interacting propagators have to be com-
puted. Single-particle dressed propagators are depicted
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The diagrammatic rules for computing the irreducible
self-energies are then the same of the reducible case, with
the only difference that dressed propagators (C9) have to
be used instead of the bare ones.

2. Self-energies

a. First order

This subsection addresses the calculation of the first-
order self-energy diagrams.
The first normal contribution corresponds to the stan-

dard Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab =

b

c

d

a
↓ ω′ , (C10)

and reads

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd

V̄acbd G
11
dc(ω

′) , (C11)

where the energy integral is to be performed in the up-
per half of the complex energy plane, according to the
convention introduced in Rule 6. Inserting the Lehmann
form (54a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C12)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C13)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C14)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab =

b̄

← ω′

a
c d̄

, (C15)

✺ 1st order ➟ energy-independent self-energy

15

where the notation Ek1k2k3 ≡ ωk1 + ωk2 + ωk3 has been introduced. Summing the two terms one has

Σ11 (2′+2′′)
ab (ω) =

1

2

∑

k1k2k3

{

Mk1k2k3
a (Mk1k2k3

b + 2Pk1k2k3
b )†

ω − Ek1k2k3 + iη
+

N k1k2k3
a

†
(N k1k2k3

b + 2Qk1k2k3
b )

ω + Ek1k2k3 − iη

}

, (94)

which can be written, using properties (90) and (91), as

Σ11 (2)
ab (ω) =

1

2

∑

k1k2k3

{

Mk1k2k3
a (Mk1k2k3

b + Pk1k2k3
b +Rk1k2k3

b )†

ω − Ek1k2k3 + iη
+

N k1k2k3
a

†
(N k1k2k3

b +Qk1k2k3
b + Sk1k2k3

b )

ω + Ek1k2k3 − iη

}

=
1

6

∑

k1k2k3

{

(Mk1k2k3
a + Pk1k2k3

a +Rk1k2k3
a ) (Mk1k2k3

b + Pk1k2k3
b +Rk1k2k3

b )†

ω − Ek1k2k3 + iη

}

+
1

6

∑

k1k2k3

{

(N k1k2k3
a +Qk1k2k3

a + Sk1k2k3
a )† (N k1k2k3

b +Qk1k2k3
b + Sk1k2k3

b )

ω + Ek1k2k3 − iη

}

Σ11
ab(ω) =

∑

k1k2k3

{

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

†Dk1k2k3
b

ω + Ek1k2k3 + iη

}

, (95)

with the definitions

Ck1k2k3
a ≡ 1√

6

[

Mk1k2k3
a + Pk1k2k3

a +Rk1k2k3
a

]

, (96a)

Dk1k2k3
a ≡ 1√

6

[

N k1k2k3
a +Qk1k2k3

a + Sk1k2k3
a

]

. (96b)

One can write in a similar way all other second-order self-energies computed in Section C 2 to obtain

Σ12 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

}

, (97a)

Σ21 (2′+2′′)
ab (ω) = −

∑

k1k2k3

{

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

}

, (97b)

Σ22 (2′+2′′)
ab (ω) =

∑

k1k2k3

{

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

}

. (97c)

F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (67) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µ δab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

(99a)

ωk Vk
a =

∑

b

[

−(tab − µ δab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

(99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as

ωk






U
V
W
Z






k

=







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E












U
V
W
Z






k

≡ Ξ






U
V
W
Z






k

(100)
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convention introduced in Rule 6. Inserting the Lehmann
form (53a) of the propagator one obtains

Σ11 (1)
ab (ω) = −i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Ūk
d Ūk∗

c

ω′ − ωk + iη

− i

∫

C↑

dω′

2π

∑

cd,k

V̄acbd
Vk∗
d Vk

c

ω′ + ωk − iη

=
∑

cd,k

V̄acbd Vk∗
d Vk

c , (C18)

where the residue theorem has been used, i.e. the first
term, with +iη in the denominator, contains no pole in
the upper plane and thus cancels out. As in the standard
case the Hartree-Fock self-energy is energy independent.
Similarly one computes the other normal self-energy

term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω′ ,

(C19)
which reads

Σ22 (1)
ab (ω) = −i

∫

C↓

dω′

2π

∑

cd

V̄āc̄b̄d̄ G
22
cd(ω

′)

= −i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
V̄k
c V̄k∗

d

ω′ − ωk + iη

− i

∫

C↓

dω′

2π

∑

cd,k

V̄āc̄b̄d̄
Uk∗
c Uk

d

ω′ + ωk − iη

= −
∑

cd,k

V̄āc̄b̄d̄ V̄k
c V̄k∗

d

= −
∑

cd,k

V̄ācb̄d Vk
c̄ Vk∗

d̄

= −
∑

cd,k

V̄acbd Vk
c Vk∗

d

= −Σ11 (1)
ab (ω) . (C20)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (C21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (C22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Ūk
c V̄k∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
V̄k
c Ūk∗

d

ω′ − ωk + iη

− i

2
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C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Uk∗
c Vk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k

V̄ābc̄d Uk∗
c Vk

d

=
[

Σ12 (1)
ba (ω)

]∗

, (C24)

where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads
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ab (ω) . (C20)

The anomalous contributions to the self-energy at first
order are

Σ12 (1)
ab (ω) =

b̄

← ω′

a
c d̄

, (C21)

Σ21 (1)
ab (ω) = d

← ω′

c̄
ā b

, (C22)

and are written respectively as

Σ12 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄ab̄cd̄G
12
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Ūk
c V̄k∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄ab̄cd̄
Vk∗
c Uk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄ab̄cd̄ Vk∗
c Uk

d , (C23)

and

Σ21 (1)
ab (ω) = − i

2

∫

C↑

dω′

2π

∑

cd

V̄c̄dāb G
21
cd(ω

′)

= − i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
V̄k
c Ūk∗

d

ω′ − ωk + iη

− i

2

∫

C↑

dω′

2π

∑

cd,k

V̄c̄dāb
Uk∗
c Vk

d

ω′ + ωk − iη

=
1

2

∑

cd,k

V̄c̄dāb Uk∗
c Vk

d

=
1

2

∑

cd,k

V̄ābc̄d Uk∗
c Vk

d

=
[

Σ12 (1)
ba (ω)

]∗

, (C24)

where the same integration technique as in (C18) has
been used.

b. Second order

Let us proceed now the computation of the second-
order contributions. The first term is the standard
second-order self-energy

Σ11 (2′)
ab (ω) = ↑ ω′ ↑ ω′′

d g

↓ ω′′′

c f

b

a

h

e

(C25)

which reads

✺ Gorkov equations
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substituting the Lehmann representation (59) for G and the operatorial form

G
(0)
ab = (ω − ΩU )

−1
ab (61)

for the unperturbed propagator, lead to

lim
ω→−ωk

{

Y
k†
a Y

k
b =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b

}

. (62)

Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
ω→−ωk

{

∑

a

(ω − ΩU )ea Y
k†
a =

∑

d

Σ̃ed(ω)Y
k†
d

}

, (63)

such that (33) and (35) finally allows one to write the matrix equation

ω

(

Vk∗
a

Uk∗
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Vk∗
b

Uk∗
b

)

, (64)

where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains

ω

(

Ūk
a

V̄k
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Ūk
b

V̄k
b

)

, (65)

expression now evaluated at ω = ωk, which can be rewritten as

∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)∣
∣
∣
∣
ωk

(

Uk
b

Vk
b

)

= ωk

(

Uk
a

Vk
a

)

. (66)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (16) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (67)

where

ρab ≡ 〈Ψ0|a†baa|Ψ0〉 =
∑

k

Vk
b Vk

a
∗

(68)

is the (normal) density matrix.

B. Normalization condition

In order to work out the normalization of the spectroscopic amplitudes let us consider the expansion of Gorkov’s
equations (34) around the pole −ωk. Let us remind that a complex function f(z) can be expanded in a Laurent series
around a point c in the complex plane as

f(z) =
n=+∞
∑

n=−∞

an (z − c)n , (69)

with

an ≡ 1

2πi

∫

C

f(z) dz

(z − c)n+1
, (70)

eigenvalue problem
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the propagator in the energy representation under the
form

G11
ab(ω) =

∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉
ω − [Ωk − Ω0] + iη

+
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉
ω + [Ωk − Ω0]− iη

. (52)

One can proceed similarly for the other Gorkov Green’s
functions and obtain eventually the following set of
Lehmann representations

G11
ab(ω) =

∑

k

{
Ūk
a Ūk∗

b

ω − ωk + iη
+

Vk∗
a Vk

b

ω + ωk − iη

}

, (53a)

G12
ab(ω) =

∑

k

{
Ūk
a V̄k∗

b

ω − ωk + iη
+

Vk∗
a Uk

b

ω + ωk − iη

}

, (53b)

G21
ab(ω) =

∑

k

{
V̄k
a Ūk∗

b

ω − ωk + iη
+

Uk∗
a Vk

b

ω + ωk − iη

}

, (53c)

G22
ab(ω) =

∑

k

{
V̄k
a V̄k∗

b

ω − ωk + iη
+

Uk∗
a Uk

b

ω + ωk − iη

}

, (53d)

where the Gorkov spectroscopic amplitudes are defined
as

Uk∗
a ≡ 〈Ψk|ā†a|Ψ0〉 , (54a)

Vk∗
a ≡ 〈Ψk|aa|Ψ0〉 , (54b)

and

Ūk∗
a ≡ 〈Ψk|a†a|Ψ0〉 , (55a)

V̄k∗
a ≡ 〈Ψk|āa|Ψ0〉 , (55b)

from which follows that Ūk
a = ηa Uk

ā and V̄k
a = ηa Vk

ā , and
where excitation energies are defined as

ωk ≡ Ωk − Ω0 . (56)

Such energies are a generalization of the separation en-
ergies introduced in Eq. (41). In contrast with the lat-
ter, the ωk lack of a transparent physical interpretation.
They generalize the quasiparticle energy spectrum of the
HFB problem obtained when self-energy contributions
are computed at first order only. In the limit of a non
superfluid system ωk gives back the standard separation
energy (41).
In analogy to Eq. (42) generalized spectroscopic fac-

tors can be defined through

S+
k ≡

∑

a

∣
∣〈ψk|a†a|ψ0〉

∣
∣
2
=

∑

a

∣
∣Uk

a

∣
∣
2
, (57a)

S−
k ≡

∑

a

|〈ψk|aa|ψ0〉|2 =
∑

a

∣
∣Vk

a

∣
∣
2
. (57b)

Notice that, as states |Ψ0〉 and |Ψk〉 are not characterized
by a definite particle number, such spectroscopic factors
do not have the sharp physical interpretation of the ones
introduced in Eq. (42). However, similarly to what dis-
cussed in Sec. III C, while S+

k (S−
k ) contains contribu-

tions from the addition (removal) of a nucleon to (from)
systems with different particle number, the dominating
term remains the one involving the targeted system.
One can finally introduce a Nambu representation for

the Lehmann form of the propagators by defining the row
and column vectors

X
k†
a ≡ 〈Ψk|A†

a|Ψ0〉 =
(

Ūk∗
a V̄k∗

a

)

, (58a)

Y
k†
a ≡ 〈Ψk|Aa|Ψ0〉 =

(

Vk∗
a

Uk∗
a

)

, (58b)

where A and A† have been introduced in Eq. (26), and
by writing

Gab(ω) =
∑

k

{

Xk
a X

k†
b

ω − ωk + iη
+

Yk†
a Yk

b

ω + ωk − iη

}

. (59)

V. SOLUTION OF GORKOV’S EQUATIONS

A. Calculation of single-particle propagators

Let us now proceed further to a form of the equations allowing for a direct numerical implementation. One can
derive an eigenvalue equation for the amplitudes U and V , together with a normalization condition, whose solution
results in a matrix diagonalization. Starting from Gorkov’s equations (34), extracting the pole at ω = −ωk through
the limit

lim
ω→−ωk

{

(ω + ωk)

[

Gab(ω) = G
(0)
ab (ω) +

∑

cd

G
(0)
ac (ω) Σ̃cd(ω)Gdb(ω)

]}

, (60)

30

which yields

Σ22 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āēc̄f̄ V̄d̄ḡb̄h̄ G22
cd(ω′)G22

fg(ω
′′)G22

he(ω
′ + ω′′ − ω)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

V̄k2

f V̄k2∗
g

ω′ − ωk2
+ iη

+
Uk2∗

f Uk2
g

ω′ + ωk2
− iη

} {

V̄k3

h V̄k3∗
e

ω′ − ωk3
+ iη

+
Uk3∗

h Uk3
e

ω′ + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄āēc̄f̄ V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d V̄k2

f V̄k2∗
g Uk3∗

h Uk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Uk2∗
f Uk2

g V̄k3

h V̄k3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

, (C19)

and

Σ22 (2′′)
ab (ω) =

d̄ ḡ

↑ ω′

c̄ f

↑ ω′′′↑ ω′′

b̄

ā

h̄

e

, (C20)

which is evaluated as

Σ22 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄āec̄f V̄d̄ḡb̄h̄ G22
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C21)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Uk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄āec̄f V̄d̄ḡb̄h̄

{

V̄k1
c V̄k1∗

d Ūk2

f V̄k2∗
h V̄k3

g Ūk3∗
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Uk1∗

c Uk1

d Vk2∗
f Uk2

h Uk3∗
g Vk3

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The first of the anomalous self-energy is

Σ12 (2′)
ab (ω) = h b̄

← ω′

↑ ω′′ ↓ ω′′′

c f

a

d̄g

e

, (C22)

29

Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

dω′′′

2π

∑

cdefgh

V̄aecf V̄dgbh G11
cd(ω′)G11

fg(ω
′′)G11

he(ω
′′′) δ(ω − ω′ − ω′′ + ω′′′)

= −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄dgbh G11
cd(ω′)G11

fg(ω
′′)G11

he(ω
′ + ω′′ − ω) . (C13)

The integrations over the two energy variables are performed in this case using two successive applications of the
formula

I(E) =

∫ +∞

−∞

dE′

2πi

{
F1

E′ − f1 + iη
+

B1

E′ − b1 − iη

} {
F2

E′ − E − f2 + iη
+

B2

E′ − E − b2 − iη

}

=

{
F1B2

E − (f1 − b2) + iη
− F2B1

E − (f2 − b1)− iη

}

. (C14)

The above integral, defined on the real axis, is computed by extending the integration to a large semicircle in the
upper or lower complex half plane of E′ (this can be done since the integrand behaves as |E′|−2 for |E′| → ∞ and
this branch do not contribute to the integral) and then by using the residue theorem. Of the four terms, two have
poles in the same half plane and yield zero as the contour can be closed in the other half. Applying this formula to
the integral (C13) we obtain

Σ11 (2′)
ab (ω) = −1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄dgbh

{

Ūk1
c Ūk1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Vk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f Ūk2∗
g

ω′′ − ωk2
+ iη

+
Vk2∗

f Vk2
g

ω′′ + ωk2
− iη

} {

Ūk3

h Ūk3∗
e

ω′ + ω′′ − ω − ωk3
+ iη

+
Vk3∗

h Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
1

2

∑

cdefgh,k1k2k3

V̄aecf V̄dgbh

{

Ūk1
c Ūk1∗

d Ūk2

f Ūk2∗
g Vk3∗

h Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Vk1

d Vk2∗
f Vk2

g Ūk3

h Ūk3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

. (C15)

With the same technique we can evaluate all other terms contributing to the second order self-energy. We have

Σ11 (2′′)
ab (ω) = ↑ ω′

d ḡ

c f

↑ ω′′′↑ ω′′

b

a

h̄

e

(C16)

which reads

Σ11 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄dḡbh̄ G11
cd(ω′)G12

fh(ω′′)G21
ge(ω

′ + ω′′ − ω) (C17)

= −
∫

dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{

Ūk1
c Ūk1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Vk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
h

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2

h

ω′′ + ωk2
− iη

} {

V̄k3
g Ūk3∗

e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

g Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

=
∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{

Ūk1
c Ūk1∗

d Ūk2

f V̄k2∗
h Uk3∗

g Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Vk1

d Vk2∗
f Uk2

h V̄k3
g Ūk3∗

e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

.

The two diagrams of the other normal self-energy Σ22 are respectively

Σ22 (2′)
ab (ω) = ↑ ω′ ↓ ω′′′

d̄ ḡ

↑ ω′′

c̄ f̄

b̄

ā

h̄

ē

, (C18)
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for what concerns the first contribution, which reads

Σ12 (2′)
ab (ω) =

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf V̄hb̄gd̄ G12
cd(ω′)G11

eg(ω′′)G11
hf (ω′ + ω′′ − ω) (C23)

=

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{

Ūk1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2
e Ūk2∗

g

ω′′ − ωk2
+ iη

+
Vk2∗

e Vk2
g

ω′′ + ωk2
− iη

} {

Ūk3

h Ūk3∗
f

ω′ + ω′′ − ω − ωk3
+ iη

+
Vk3∗

h Vk3

f

ω′ + ω′′ − ω + ωk3
− iη

}

= −
∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{

Ūk1
c V̄k1∗

d Ūk2
e Ūk2∗

g Vk3∗
h Vk3

f

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Uk1

d Vk2∗
e Vk2

g Ūk3

h Ūk3∗
f

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

,

and

Σ12 (2′′)
ab (ω) =

c f

← ω′

↓ ω′′′

h̄ b̄

↖ ω′′

e
a

d̄ḡ

, (C24)

yielding

Σ12 (2′′)
ab (ω) =

1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh

V̄aecf Vh̄b̄ḡd̄ G12
cd(ω′)G12

fg(ω
′′)G21

he(ω
′ + ω′′ − ω) (C25)

=
1

2

∫
dω′

2π

dω′′

2π

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d

ω′ − ωk1
+ iη

+
Vk1∗

c Uk1

d

ω′ + ωk1
− iη

}

×
{

Ūk2

f V̄k2∗
g

ω′′ − ωk2
+ iη

+
Vk2∗

f Uk2
g

ω′′ + ωk2
− iη

} {

V̄k3

h Ūk3∗
e

ω′ + ω′′ − ω − ωk3
+ iη

+
Uk3∗

h Vk3
e

ω′ + ω′′ − ω + ωk3
− iη

}

= −1

2

∑

cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{

Ūk1
c V̄k1∗

d Ūk2

f V̄k2∗
g Uk3∗

h Vk3
e

ω − (ωk1
+ ωk2

+ ωk3
) + iη

+
Vk1∗

c Uk1

d Vk2∗
f Vk2

g V̄k3

h Ūk3∗
e

ω + (ωk3
+ ωk1

+ ωk2
)− iη

}

,

Finally

Σ21 (2′)
ab (ω) =

g d

↑ ω′′ ↓ ω′′′

ā e

c̄

b

↑ ω′′′

h

f

, (C26)
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the second-order self-energies in the form (94) and (96)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω

∣
∣
∣
∣
ω=ωk

X
k
b

= 1 +
∑

ab

∑

k1k2k3

{

Uk∗
a

∂

∂ω

[

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]

Vk
b

− Vk∗
a

∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
b

+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3







(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2







= 1−
∑

k1k2k3

[

Wk1k2k3
k

†Wk1k2k3
k + Zk1k2k3

k

†Zk1k2k3
k

]

. (100)

Eventually, the normalization condition for each pole k of the one-body Green’s function is

∑

a

[
∣
∣Uk

a

∣
∣
2
+

∣
∣Vk

a

∣
∣
2
]

+
∑

k1k2k3

[∣
∣
∣Wk1k2k3

k

∣
∣
∣

2
+
∣
∣
∣Zk1k2k3

k

∣
∣
∣

2
]

= 1 . (101)

Notice that one can also derive such a relation starting
from the normalization condition for the amplitudes Y,
Eq. (80).
The introduction of amplitudes W and Z in Eq. (97)

has led to the transformation of Gorkov’s equations, to
be solved for the energy-dependent single-particle propa-
gators, into an energy-independent eigenvalue problem
involving the diagonalization of the matrix Ξ, to be
solved for the (energy-independent) amplitude vectors
(U ,V ,W ,Z). The fact that Ξ is Hermitian implies that
the eigenvalues ωk are real. Moreover, in analogy with
the HFB problem, solutions come in pairs with opposite
sign, i.e. for any solution {Uk,Vk,Wk,Zk,ωk} there ex-
ist another solution {Vk∗,Uk∗,Z∗

k ,W∗
k ,−ωk}. This can

be checked either by substituting ω with −ω in the steps
that led to Eq. (99) or by re-deriving Eq. (99) starting
from Eq. (64) instead of Eq. (65).
Let us discuss in some detail the structure of Ξ. The

upper-left block

ΞHFB ≡
(

T − µ+ Λ h̃
h̃† −T + µ− Λ

)

(102)

represents the mean-field sector. If second-order self-
energies are zero, Ξ = ΞHFB and one recovers the

Hartree-Fock-Bogoliubov eigenvalue problem of fixed di-
mensionality (twice the size of the single-particle basis)
for the amplitudes U and V . Let us insist on the fact
that although no energy dependence is involved at first
order, some fractionation of the single-particle strength
is already accounted for at the HFB level, such that one
indeed deals with quasiparticle degrees of freedom. In
particular one can deduce from Eq. (86) that any quasi-
particle has an associated (generalized) spectroscopic fac-
tor (defined in Eq. (57)) which is smaller than one. Such
fractionation is an established consequence of static pair-
ing correlations that are explicitly treated at the HFB
level through particle number symmetry breaking.
The upper right

Ξ(2) ≡
(

C −D†

−D† C

)

(103)

and lower left Ξ(2)† blocks contain second-order contri-
butions representing the couplings between one quasipar-
ticle and three-quasiparticle configurations. Such cou-
plings further fragment the single-particle strength. In-
deed, following the iterative process leading to a self-
consistent solution of Gorkov’s equations, one observes

with the normalization condition
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F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (66) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

, (99a)

ωk Vk
a =

∑

b

[

−(tab − µab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

, (99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E













Uk

Vk

Wk

Zk







= ωk







Uk

Vk

Wk

Zk







(100)

where Ξ is an energy-independent Hermitian matrix. The diagonalization of Ξ is equivalent to solving the second-
order Gorkov equations. Such a transformation is made possible by the explicit energy dependence embodied in the
Lehmann representation: the known pole structure of the propagators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (100) let us expand Eq. (81) by inserting

the second-order self-energies in the form (95) and (97)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω

∣
∣
∣
∣
ω=ωk

X
k
b

= 1 +
∑

ab

∑

k1k2k3

{

Uk∗
a

∂

∂ω

[

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]

Vk
b

− Vk∗
a

∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
b

+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3







(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2







= 1−
∑

k1k2k3

[

Wk1k2k3
k

†Wk1k2k3
k + Zk1k2k3

k

†Zk1k2k3
k

]

. (101)

Energy independent eigenvalue problem
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and column vectors

X
k†
a ≡ 〈Ψk|A†

a|Ψ0〉 =
(

Ūk∗
a V̄k∗

a

)

(65a)

(65b)

Y
k†
a ≡ 〈Ψk|Aa|Ψ0〉 =

(

Vk∗
a

Uk∗
a

)

(65c)

where A and A† have been introduced in Eq. (32), and

by writing

Gab(ω) =
∑

k

{

Xk
a X

k†
b

ω − ωk + iη
+

Yk†
a Yk

b

ω + ωk − iη

}

. (66)

V. SOLUTION OF GORKOV’S EQUATIONS

A. Calculation of single-particle propagators

Let us now proceed further to a form of the equations allowing for a direct numerical implementation. One can
derive an eigenvalue equation for the amplitudes U and V , together with a normalization condition, whose solution
results in a matrix diagonalization. Starting from Gorkov’s equations (40), extracting the pole at ω = −ωk through
the limit

lim
ω→−ωk

{

(ω + ωk)

[

Gab(ω) = G
(0)
ab (ω) +

∑

cd

G
(0)
ac (ω) Σ̃cd(ω)Gdb(ω)

]}

, (67)

substituting the Lehmann representation (66) for G and the operatorial form

G
(0)
ab = (ω − ΩU )

−1
ab (68)

for the unperturbed propagator, lead to

lim
ω→−ωk

{

Y
k†
a Y

k
b =

∑

cd

(ω − ΩU )
−1
ac Σ̃cd(ω)Y

k†
d Y

k
b

}

. (69)

Multiplying both sides by (ω − ΩU )ea and summing over a yields

lim
ω→−ωk

{

∑

a

(ω − ΩU )ea Y
k†
a =

∑

d

Σ̃ed(ω)Y
k†
d

}

, (70)

such that (39) and (41) finally allows one to write the matrix equation

ω

(

Vk∗
a

Uk∗
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Vk∗
b

Uk∗
b

)

, (71)

where the two sides are evaluated at ω = −ωk. Computing the residue at ωk one similarly obtains

ω

(

Ūk
a

V̄k
a

)

=
∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)(

Ūk
b

V̄k
b

)

, (72)

expression now evaluated at ω = ωk, which can be rewritten as

∑

b

(

tab − µab + Σ11
ab(ω) Σ12

ab(ω)
Σ21

ab(ω) −tab + µab + Σ22
ab(ω)

)∣
∣
∣
∣
ωk

(

Uk
b

Vk
b

)

= ωk

(

Uk
a

Vk
a

)

. (73)

The latter relationship represents a system of coupled eigenvalue equations for the spectroscopic amplitudes U and
V . The result is independent of the auxiliary potential U , which cancelled out leaving only the proper self-energy
contributions that act as an energy-dependent potential. The self-energy depends in turn on the amplitudes U and V ,
which requires the solution to be obtained through an iterative procedure. At each iteration the chemical potential µ
has to be fixed such that Eq. (22) is fulfilled, which translates into the condition that amplitudes V satisfy

N =
∑

a

ρaa =
∑

a,k

∣
∣Vk

a

∣
∣
2
, (74)



How do we select the poles?
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F. Matrix representation of Gorkov’s equations

Defining quantities W and Z through

(ωk − Ek1k2k3)Wk1k2k3
k ≡

∑

a

[

Ck1k2k3
a

† Uk
a −Dk1k2k3

a Vk
a

]

(98a)

(ωk + Ek1k2k3)Zk1k2k3
k ≡

∑

a

[

−Dk1k2k3
a Uk

a + Ck1k2k3
a

† Vk
a

]

(98b)

Gorkov’s equations (66) computed in terms of second-order self-energies can be rewritten as

ωk Uk
a =

∑

b

[

(tab − µab + Λab)Uk
b + h̃ab Vk

b

]

+
∑

k1k2k3

[

Ck1k2k3
a Wk1k2k3

k −Dk1k2k3
a

†Zk1k2k3
k

]

, (99a)

ωk Vk
a =

∑

b

[

−(tab − µab + Λab)Vk
b + h̃†

ab U
k
b

]

+
∑

k1k2k3

[

−Dk1k2k3
a

†Wk1k2k3
k + Ck1k2k3

a Zk1k2k3
k

]

, (99b)

which grouped together with Eq. (98) provide a set of four coupled equations for unknowns U , V , W and Z that can
be displayed in a matrix form as







T − µ+ Λ h̃ C −D†

h̃† −T + µ− Λ −D† C
C† −D E 0
−D C† 0 −E













Uk

Vk

Wk

Zk







= ωk







Uk

Vk

Wk

Zk







(100)

where Ξ is an energy-independent Hermitian matrix. The diagonalization of Ξ is equivalent to solving the second-
order Gorkov equations. Such a transformation is made possible by the explicit energy dependence embodied in the
Lehmann representation: the known pole structure of the propagators, and consequently of second-order self-energy
contributions, is used to recast Gorkov’s equations under the form of an energy-independent eigenvalue problem,
whose eigenvalues and eigenvectors yield the complete set of poles of one-body Green’s functions. The solution of this
eigenvalue problem still has to be solved self-consistently together with Eq. (67).
In order to derive a normalization condition for the column vectors in Eq. (100) let us expand Eq. (81) by inserting

the second-order self-energies in the form (95) and (97)

∑

a

∣
∣X

k
a

∣
∣
2
= 1 +

∑

ab

X
k
a
† ∂Σab(ω)

∂ω

∣
∣
∣
∣
ω=ωk

X
k
b

= 1 +
∑

ab

∑

k1k2k3

{

Uk∗
a

∂

∂ω

[

Ck1k2k3
a Ck1k2k3

b

†

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Dk1k2k3
b

ω + Ek1k2k3 + iη

]

Uk
b

− Uk∗
a

∂

∂ω

[

Ck1k2k3
a Dk1k2k3

b

ω − Ek1k2k3 + iη
+

Dk1k2k3
a

† Ck1k2k3
b

†

ω + Ek1k2k3 + iη

]

Vk
b

− Vk∗
a

∂

∂ω

[

Dk1k2k3
a

† Ck1k2k3
b

†

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Dk1k2k3

b

ω + Ek1k2k3 + iη

]

Uk
b

+ Vk∗
a

∂

∂ω

[

Dk1k2k3
a

†Dk1k2k3
b

ω − Ek1k2k3 + iη
+

Ck1k2k3
a Ck1k2k3

b

†

ω + Ek1k2k3 + iη

]

Vk
b

}∣
∣
∣
∣
∣
ω=ωk

= 1−
∑

ab

∑

k1k2k3







(

Uk∗
a Ck1k2k3

a − Vk∗
a Dk1k2k3

a
†
) (

Ck1k2k3
b

† Uk
b −Dk1k2k3

b Vk
b

)

(ωk − Ek1k2k3)
2

−

(

Uk∗
a Dk1k2k3

a
† − Vk∗

a Ck1k2k3
a

) (

Dk1k2k3
b Uk

b − Ck1k2k3
b

† Vk
b

)

(ωk + Ek1k2k3)
2







= 1−
∑

k1k2k3

[

Wk1k2k3
k

†Wk1k2k3
k + Zk1k2k3

k

†Zk1k2k3
k

]

. (101)

Lanczos

E

-E

E′
-E′

➟ Conserves moments of spectral functions

➟ Equivalent to exact diagonalization
    for NL → dim(E)

We do not...

➟ Lanczos projection of Gorkov matrix



Testing Lanczos projection
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Binding energies

✺ Systematic along isotopic/isotonic chains become available
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Spectrum and spectroscopic factors

✺ Separation energy spectrum

✺ Spectroscopic factors

where

{

Lehmann representation

{
Separation energies            + transfer strengths

and

7

and one obtains

G11
ab(t, t

′) = −iθ(t− t′)
∑

N

|cN |2
∑

k

e−i[EN+1
k

−EN
0 −µ](t−t′) 〈ψN

0 |aa|ψN+1
k 〉〈ψN+1

k |a†b|ψ
N
0 〉

+ iθ(t′ − t)
∑

N

|cN |2
∑

k

ei[E
N−1
k −EN

0 +µ](t−t′) 〈ψN
0 |a†b|ψ

N−1
k 〉〈ψN−1

k |aa|ψN
0 〉 . (43)

By inserting the integral representation of the theta function and reading out the Fourier transform one obtains the
propagator in the energy representation

G11
ab(ω) =

∑

N

|cN |2
∑

k

〈ψN
0 |aa|ψN+1

k 〉〈ψN+1
k |a†b|ψN

0 〉
ω − [EN+1

k − EN
0 − µ] + iη

+
∑

N

|cN |2
∑

k

〈ψN
0 |a†b|ψ

N−1
k 〉〈ψN−1

k |aa|ψN
0 〉

ω + [EN−1
k − EN

0 + µ]− iη

Gab(ω) =
∑

k

X k (N)
a

∗
X k (N)

b

ω − E+ (N)
k + iη

+
∑

k

Yk (N)
a Yk (N)

b

∗

ω − E− (N)
k − iη

(44)

where the spectroscopic amplitudes in the N -particle system are defined as

X k (N)
a ≡ 〈ψN+1

k |a†a|ψN
0 〉 , (45a)

Yk (N)
a ≡ 〈ψN−1

k |aa|ψN
0 〉 , (45b)

and the separation energies are

E+ (N)
k ≡EN+1

k − EN
0 (46a)

E− (N)
k ≡EN

0 − EN−1
k (46b)

From the amplitudes (45) one defines the spectroscopic factors

SN+1
k ≡

∑

a

∣
∣〈ψN+1

k |a†a|ψN
0 〉

∣
∣
2
=

∑

a

∣
∣
∣X k (N)

a

∣
∣
∣

2
, (47a)

SN−1
k ≡

∑

a

∣
∣〈ψN−1

k |aa|ψN
0 〉

∣
∣
2
=

∑

a

∣
∣
∣Yk (N)

a

∣
∣
∣

2
, (47b)

interpreted, respectively, as the probabilities to add (remove) a nucleon to (from) the N-particle ground-state, while
leaving the residual nucleus in its kth excited state.
In a similar way it is possible to derive the spectral form of the other normal Green’s function

G22
ab(ω) =

∑

N

|cN |2
∑

k

Yk (N)
ā

∗
Yk (N)
b̄

ω + E− (N)
k + iη

+
∑

N

|cN |2
∑

k

X k (N)
ā X k (N)

b̄

∗

ω + E+(N)
k − iη

. (48)

These results show that it is possible to obtain, without further assumptions, an exact Lehmann representation for
the normal Gorkov propagators. Poles are present for all values of N and correspond to energy differencies between
the N -particle ground-state and the (N ± 1)-particle eigenstates. Although contributions are present for all values of
N , the strengths of such poles are weighted by the coefficients cN , resulting in a distribution which is prominently
peaked around the average particle number demanded through Eq. (21).
Let us now apply the same procedure to anomalous propagators, taking G21 as an example. One first expands the

reference states and use the Schrödinger representation (26) to obtain

G21
ab(t, t

′) = −i
∑

NN ′

c∗N ′cN 〈ψN ′

0 |T
{

ā†a(t)a
†
b(t

′)
}

|ψN
0 〉

= −i
∑

N

c∗N+2cN 〈ψN+2
0 |T

{

ā†a(t)a
†
b(t

′)
}

|ψN
0 〉

= −iθ(t− t′)
∑

N

c∗N+2cN 〈ψN+2
0 |ā†a(t)a

†
b(t

′)|ψN
0 〉+ iθ(t′ − t)

∑

N

c∗N+2cN 〈ψN+2
0 |a†b(t

′)ā†a(t)|ψN
0 〉

= −iθ(t− t′)
∑

N

c∗N+2cN ei[E
N+2
0 −µ(N+2)]te−i(EN

0 −µN)t′ 〈ψN+2
0 |ā†a e−iΩ(t−t′) a†b|ψ

N
0 〉

+ iθ(t′ − t)
∑

N

c∗N+2cN ei[E
N+2
0 −µ(N+2)]t′e−i(EN

0 −µN)t 〈ψN+2
0 |a†b e

iΩ(t−t′) ā†a|ψN
0 〉 . (49)

Centroids

ESPE

6

Eventually, standard Dyson’s equation is generalized as
set of coupled equations involving the two types of prop-
agators and self-energies. These are known as Gorkov’s
equations [45] and read, in Nambu’s notation,

Gab(ω) = G
(0)
ab (ω)+

∑

cd

G(0)
ac (ω) Σ̃cd(ω)Gdb(ω) . (34)

As Dyson’s equation in the standard case, Gorkov’s equa-
tions represent an expansion of interacting or dressed
one-body normal and anomalous Green’s functions in
terms of unperturbed ones. If the method is self-
consistent, the final result does not depend on the choice
of the auxiliary potential, which disappears from the
equations once the propagators are dressed with the cor-
responding self-energies. From a practical point of view
it is useful to track where the auxiliary potential enters
and how its cancelation is eventually worked out. This
point is addressed in Section IVA, where the solution of
Gorkov’s equations is discussed. In particular, and since
such a solution is to be found through an iterative pro-
cedure, one is eventually interested in choosing a good
auxiliary potential as a starting point.

Let us further remark that, as the auxiliary potential
(29) has a one-body character, i.e. it acts as a mean field,
the search for the ground state of ΩU corresponds to solv-

ing a Bogoliubov-like problem, as becomes evident when
writing the unperturbed grand potential in its Nambu’s
form

[ΩU ]ab =

(

Tab + Uab − µ δab Ũ †
ab

Ũab −Tab − Uab + µ δab

)

.

(35)
In fact a convenient choice for ΩU is constituted by
ΩHFB , i.e. one first solves the Hartree-Fock-Bogoliubov
(HFB) problem and then uses the resulting propagators
GHFB

ab as the unperturbed ones. Notice that the self-
energy corresponding to this solution, ΣHFB , eventually
differs from the first-order self-energy Σ(1) as soon as
higher orders are included in the calculation because of
the associated self-consistent dressing of the one-body
propagators.

G. Lehmann representation

Let us consider a complete set of normalized eigen-
states of Ω with no definite particle number

Ω|Ψk〉 = Ωk|Ψk〉 , (36)

and which span the Fock space F . Inserting the corre-
sponding completeness relation, G11(t, t′) becomes

G11
ab(t, t

′) = −iθ(t− t′)
∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉 ei[Ω0−Ωk](t−t′) + iθ(t′ − t)
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉 e−i[Ω0−Ωk](t−t′) .

Using the integral representation of the theta function
and reading out the Fourier transform, one obtains the
propagator in energy representation under the form

G11
ab(ω) =

∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†b|Ψ0〉
ω − [Ωk − Ω0] + iη

+
∑

k

〈Ψ0|a†b|Ψk〉〈Ψk|aa|Ψ0〉
ω + [Ωk − Ω0]− iη

. (37)

One can proceed similarly for the other three Gorkov-
Green’s functions and obtain the following set of
Lehmann representations

G11
ab(ω) =

∑

k

{
Uk
a Uk∗

b

ω − ωk + iη
+

V̄k∗
a V̄k

b

ω + ωk − iη

}

, (38a)

G12
ab(ω) =

∑

k

{
Uk
a Vk∗

b

ω − ωk + iη
+

V̄k∗
a Ūk

b

ω + ωk − iη

}

, (38b)

G21
ab(ω) =

∑

k

{
Vk
a Uk∗

b

ω − ωk + iη
+

Ūk∗
a V̄k

b

ω + ωk − iη

}

, (38c)

G22
ab(ω) =

∑

k

{
Vk
a Vk∗

b

ω − ωk + iη
+

Ūk∗
a Ūk

b

ω + ωk − iη

}

. (38d)

with Gorkov’s spectroscopic amplitudes defined as

Uk∗
a ≡ 〈Ψk|a†a|Ψ0〉 , (39a)

Vk∗
a ≡ 〈Ψk|āa|Ψ0〉 , (39b)

and

Ūk∗
a ≡ 〈Ψk|ā†a|Ψ0〉 , (40a)

V̄k∗
a ≡ 〈Ψk|aa|Ψ0〉 , (40b)

from which follows that2

Ūk
a = +ηa Uk

ã , (41a)

V̄k
a = −ηa Vk

ã . (41b)

The poles of the propagators3 are given by ωk ≡ Ωk−Ω0.
The relation of such poles to separation energies between

2 Similarly to Eq. 5, we may equivalently write Eq. 41 as Ūk
a =

+Uk
ā and V̄k

a = −Vk
ā .

3 As discussed later on, eigensolutions of Gorkov’s equations come
in pairs (ωk ,−ωk) such that one should only sum on positive
solutions in Eq. 39.
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differs from the first-order self-energy Σ(1) as soon as
higher orders are included in the calculation because of
the associated self-consistent dressing of the one-body
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Let us consider a complete set of normalized eigen-
states of Ω with no definite particle number

Ω|Ψk〉 = Ωk|Ψk〉 , (36)
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ã . (41b)

The poles of the propagators3 are given by ωk ≡ Ωk−Ω0.
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2 Similarly to Eq. 5, we may equivalently write Eq. 41 as Ūk
a =
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propagator in the energy representation under the form

G11
ab(ω) =

∑

k

〈Ψ0|aa|Ψk〉〈Ψk|a†
b|Ψ0〉

ω − [Ωk − Ω0] + iη

+
∑

k

〈Ψ0|a†
b|Ψk〉〈Ψk|aa|Ψ0〉

ω + [Ωk − Ω0]− iη
. (52)

We can proceed similarly for the other Gorkov Green’s
functions and obtain eventually the following set of
Lehmann representations

G11
ab(ω) =

∑

k

{
Ūk

a Ūk∗
b

ω − ωk + iη
+

Vk∗
a Vk

b

ω + ωk − iη

}

, (53a)

G12
ab(ω) =

∑

k

{
Ūk

a V̄k∗
b

ω − ωk + iη
+

Vk∗
a Uk

b

ω + ωk − iη

}

, (53b)

G21
ab(ω) =

∑

k

{
V̄k

a Ūk∗
b

ω − ωk + iη
+

Uk∗
a Vk

b

ω + ωk − iη

}

, (53c)

G22
ab(ω) =

∑

k

{
V̄k

a V̄k∗
b

ω − ωk + iη
+

Uk∗
a Uk

b

ω + ωk − iη

}

, (53d)

where the Gorkov spectroscopic amplitudes are defined
as

Uk∗
a ≡ 〈Ψk|ā†

a|Ψ0〉 , (54a)

Vk∗
a ≡ 〈Ψk|aa|Ψ0〉 , (54b)

and

Ūk∗
a ≡ 〈Ψk|a†

a|Ψ0〉 , (55a)

V̄k∗
a ≡ 〈Ψk|āa|Ψ0〉 , (55b)

(from which follows Ūk
a = ηa Uk

ā and V̄k
a = ηa Vk

ā ), and
where excitation energies are defined as

ωk ≡ Ωk − Ω0 . (56)

Such energies are a generalization of the separation en-
ergies introduced in Eq. (41). However, in contrast with
the exact Lehmann representation of the previous sec-
tion, in this case they lack of a transparent physical in-
terpretation. They generalize one quasiparticle energies
in the HFB problem, i.e. when self-energy contributions
are computed at first order only. Moreover, in the limit
of a non superfluid system they give back the standard
separation energies.

In analogy to Eq. (42) we define the generalized spec-
troscopic factors

S+
k ≡

∑

a

∣
∣〈ψk|a†

a|ψ0〉
∣
∣
2

=
∑

a

∣
∣Uk

a

∣
∣
2

, (57a)

S−
k ≡

∑

a

|〈ψk|aa|ψ0〉|2 =
∑

a

∣
∣Vk

a

∣
∣
2

. (57b)

Notice that, as the states |Ψ0〉 and |Ψk〉 are not charac-
terized by a definite particle number, such spectroscopic
factors do not have the sharp physical interpretation of
the ones in (42). However, similarly to what discussed in
Sec. III C, while S+

k (S−
k ) contains contributions from the

addition (removal) of a nucleon to (from) systems with
different particle number, the dominating term remains
the one involving the N-particle targeted system.

One can introduce a Nambu representation also for the
Lehmann form of the propagators by defining the row and
column vectors

X
k
a ≡

(

Ūk
a

V̄k
a

)

, Xk†
a =

(

Ūk∗
a V̄k∗

a

)

, (58a)

Y
k
a ≡

(

Vk
a Uk

a

)

, Yk†
a =

(

Vk∗
a

Uk∗
a

)

, (58b)

and then writing

Gab(ω) =
∑

k

{

Xk
a X

k†
b

ω − ωk + iη
+

Yk†
a Yk

b

ω + ωk − iη

}

. (59)

V. SOLUTION OF GORKOV’S EQUATIONS

A. Calculation of single-particle propagators

We now proceed further to a form of the equations which allows a direct numerical implementation. We derive an
eigenvalue equation for the amplitudes U and V , together with one for their normalization, whose solution results in
a matrix diagonalization. We start from Gorkov’s equations (34) and extract the pole at ω = −ωk by taking the limit

lim
ω→−ωk

{

(ω + ωk)

[

Gab(ω) = G
(0)
ab (ω) +

∑

cd

G
(0)
ac (ω) Σ̃cd(ω)Gdb(ω)

]}

, (60)
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[Baranger 1970, Duguet et al. 2011]
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III. GENERALIZATION OF UMEYA-MUTO SUM RULE TO FOCK SPACE

Umeya-Muto sum rule [3] can be generalized to the case of a theory defined in Fock space, such as the Gorkov-Green’s
function formalism introduced above. Although the following derivation could be carried out for any initial many-body
state defined in Fock space |�JM

i ⌅, let us now consider the ground state of the targeted nucleus to be in a J⇤ = 0+

state, i.e. |�00
0 ⌅. The single-particle basis can be conveniently labelled by a = {na,⌅a, ja,ma, qa} = {na,ma,�},

where na represents the principal quantum number, ⌅a the parity, ja the total angular momentum, ma its projection
along the z-axis and qa the isospin projection. In the following each roman single-particle index corresponds to such
set of quantum numbers.

In this case in the overlaps (15) and (16) the quantum numbers of the state |�JkMk
k ⌅ are constrained by the ones

of the creation and annihilation operators acting on |�00
0 ⌅. In particular one can define

Uk
a = ⇤�00

0 |āa|�JkMk
k ⌅

= ⌅a(�1)ja ⇤�00
0 |(�1)m ana��ma |�

JkMk
k ⌅

= ⌅a(�1)ja C00
JkMkjama

⇤�00
0 ||ana�||�

JkMk
k ⌅

= ⇥Jkja ⇥Mk�ma

⌅a(�1)ma

⇧
2ja + 1

⇤�00
0 ||ana�||�

JkMk
k ⌅

⇥ ⇥⇥� ⇥Mk�ma (�1)ma Unk

na [�] , (28)

and similarly

Ūk
a ⇥ ⇥⇥� ⇥Mkma Ū

nk

na [�] , (29)

Vk
a ⇥ ⇥⇥� ⇥Mk�ma (�1)�ma Vnk

na [�] , (30)

V̄k
a ⇥ ⇥⇥� ⇥Mkma V̄

nk

na [�] . (31)

The e⇥ective single-particle energy of an orbit a is defined by

⇤centa ⇥ hcent
ab ⇥ab = taa +

⌅

cd

V̄ NN
acad ⇧

[1]
dc +

⌅

cdef

V̄ NNN
acdaef ⇧

[2]
efcd ⇥

⌅

k

S+a
k E+

k +
⌅

k

S�a
k E�

k (32)

where E±(N)
k are the generalized separation energies introduced in Eq. (26) and S±a

k the generalized spectroscopic
amplitudes defined through

S+a
k ⇥

⇤⇤⇤⇤�JkMk
k |a†a|�00

0 ⌅
⇤⇤⇤
2
=

⇤⇤Uk
a

⇤⇤2 (33)

S�a
k ⇥

⇤⇤⇤⇤�JkMk
k |aa|�00

0 ⌅
⇤⇤⇤
2
=

⇤⇤Vk
a

⇤⇤2 . (34)

One can show that such amplitudes are normalized to one
⌅

k

S+a
k +

⌅

k

S�a
k =

⌅

k

⇧
⇤�00

0 |aa|�JkMk
k ⌅⇤�JkMk

k |a†a|�00
0 ⌅+ ⇤�00

0 |a†a|�
JkMk
k ⌅⇤�JkMk

k |aa|�00
0 ⌅

⌃

= ⇤�00
0 |

�
aa, a

†
a

⇥
|�00

0 ⌅
= ⇥aa
= 1 . (35)

By employing definitions (28)-(31) one can further specify the m-independence of the e⇥ective single-particle energy
defined in Eq. (32)

⇤na� =
⌅

k

S+na�
nk

E+(N)
k +

⌅

k

S�na�
nk

E�(N)
k , (36)

where the block-diagonal generalized spectroscopic amplitudes are now defined through

S+a
k = ⇥⇥� ⇥Mk�ma

⇤⇤⇤Unk

na [�]

⇤⇤⇤
2
⇥ ⇥⇥� ⇥Mk�maS+na�

nk
(37)

S�a
k = ⇥⇥� ⇥Mk�ma

⇤⇤⇤Vnk

na [�]

⇤⇤⇤
2
⇥ ⇥⇥� ⇥Mk�maS�na�

nk
. (38)



Natural single-particle occupation
✺ Natural orbit a: ρab[1] = nanat δab

✺ Associated energy: εanat = haacent

✺ Dynamical correlations similar for doubly-magic and semi-magic

✺ Static pairing essential to open-shells
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where na represents the principal quantum number, ⌅a the parity, ja the total angular momentum, ma its projection
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k ⌅ are constrained by the ones
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0 ⌅. In particular one can define
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The e⇤ective single-particle energy of an orbit a is defined by

⇤centa ⇥ hcent
ab ⇥ab = taa +

⌅

cd

V̄ NN
acad ⇧

[1]
dc +

⌅

cdef

V̄ NNN
acdaef ⇧

[2]
efcd ⇥

⌅

k

S+a
k E+

k +
⌅

k

S�a
k E�

k (32)

�(3)
n (N) =

(�1)N

2

⌃ µn

⌃N
+�n (33)

where E±(N)
k are the generalized separation energies introduced in Eq. (26) and S±a

k the generalized spectroscopic
amplitudes defined through

S+a
k ⇥

⇤⇤⇤⇤⇥JkMk
k |a†a|⇥00

0 ⌅
⇤⇤⇤
2
=

⇤⇤Uk
a

⇤⇤2 (34)

S�a
k ⇥

⇤⇤⇤⇤⇥JkMk
k |aa|⇥00

0 ⌅
⇤⇤⇤
2
=

⇤⇤Vk
a

⇤⇤2 . (35)

One can show that such amplitudes are normalized to one
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⌅
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⌅
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⌃

= ⇤⇥00
0 |

�
aa, a

†
a

⇥
|⇥00

0 ⌅
= ⇥aa
= 1 . (36)

By employing definitions (28)-(31) one can further specify the m-independence of the e⇤ective single-particle energy
defined in Eq. (32)

⇤na� =
⌅

k

S+na�
nk

E+(N)
k +

⌅

k

S�na�
nk

E�(N)
k , (37)

✺ Three-point mass differences

➟ Systematic underestimation of experimental gaps
➟ Missing 3rd order and NNN should change picture qualitatively

☝ Proof-of-principle only (larger model space needed!)  

Generates O-E oscillations

Actual pairing gaps

18 20 22 24 26 28 30
0

0.5

1

1.5

2

2.5

3
Experiment
1st Vlow-k 2.1
2nd Vlow-k 2.1

N

Ca

Δ
n(3

) (
N

) [
M

eV
]

18 20 22 24 26 28 30
0

0.5

1

1.5

2

2.5

3
Experiment
1st Vsrg 2.0
2nd Vsrg 2.0

N

Ca

Δ
n(3

) (
N

) [
M

eV
]



Conclusions & Outlook

✺ Formulation of particle-number restored Gorkov theory

✺ Improvement of the self-energy expansion

✺ Implementation of three-body forces

✺ Gorkov-Green’s functions: 
    first ab-initio open-shell calculations
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which yields

Σ22 (2′)
ab (ω) = −1

2
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, (C19)

and

Σ22 (2′′)
ab (ω) =

d̄ ḡ

↑ ω′

c̄ f

↑ ω′′′↑ ω′′
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ā
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e

, (C20)

which is evaluated as

Σ22 (2′′)
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The first of the anomalous self-energy is

Σ12 (2′)
ab (ω) = h b̄

← ω′

↑ ω′′ ↓ ω′′′

c f

a

d̄g

e

, (C22)

✺ Provide optical potentials 
    for reaction models

✺ Provide constraints for next-generation
    Energy Density Functionals


