Probing light nuclei with external sources

Outline

- Introduction
- Exchange currents from chiral EFT
- Some applications
- Reactions involving pions
- Pion-deuteron scattering
- Pion production in NN collisions
- Pion production \& CSB
- Summary \& outlook

From QCD to nuclear physics

The roadmap: QCD \rightarrow Chiral Perturbation Theory \rightarrow hadron dynamics

NN interaction is strong, resummations/nonperturbative methods needed...
Simplification: nonrelativistic problem $\left(\left|\vec{p}_{i}\right| \sim M_{\pi} \ll m_{N}\right) \longrightarrow$ the QM A-body problem Weinberg' 91

$$
[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2 m_{N}}+\mathcal{O}\left(m_{N}^{-3}\right)\right)+\underbrace{V_{2 N}+V_{3 N}+V_{4 N}+\ldots}_{\text {derived within in ChPT } \rightarrow \text { talk by Hermann Krebs }}]|\Psi\rangle=E|\Psi\rangle
$$

can be solved on a lattice
\rightarrow talk by Ulf-G. Meißner

- unified description of $\pi \pi$, πN and $N N$
- consistent many-body forces and currents
- systematically improvable
- bridging different reactions (electroweak, π-prod., ...)
- precision physics with/from light nuclei

Electromagnetic currents (one-photon exchange approximation)

For Compton scattering, see: Grießhammer, McGovern, Phillips, Feldman, arXiv:1203.6834 [nucl-th]

Electromagnetic exchange currents

Order $e Q^{-1}$:

\leftarrow well known since decades Chemtob, Rho, Friar, Riska, Adam, .

Order $e Q$:

- Threshold kinematics $\omega \sim|\vec{q}| \sim M_{\pi}^{2} / m$

Park, Min, Rho '95; Park, Kubodera, Min, Rho; Song, Lazauskas, Park, Min, ...
Application to $n p \rightarrow d \gamma$ at threshold: $\sigma_{1 N}=306.6 \mathrm{mb} \longrightarrow \sigma_{1 N+2 N}=334 \pm 3 \mathrm{mb}$ to be compared with $\quad \sigma_{\exp }=334.2 \pm 0.5 \mathrm{mb}$

- General kinematics $\omega \sim M_{\pi}^{2} / m, \quad|\vec{q}| \sim M_{\pi}$

Pastore, Schiavilla, Girlanda, Viviani; Kölling, Krebs, EE, Meißner

Notice: 3 N diagrams do not yield currents at this order...

From $L_{\text {eff }}$ to nuclear forces/currents

Method of unitary transformation (Taketani, Mashida, Ohnuma, Okubo, EE, Glöckle, Meißner, Krebs, Kölling)

From $L_{\text {eff }}$ to nuclear forces/currents

Method of unitary transformation (Taketani, Mashida, Ohnuma, Okubo, EE, Glöckle, Meißner, Krebs, Kölling)

- Nuclear forces via UT (Fock space): $H \rightarrow \tilde{H}=U^{\dagger}(\square) U=\left(\begin{array}{cc}\tilde{H}_{\text {med }} & 0 \\ 0 & \tilde{H}_{\text {rest }}\end{array}\right)$
- „Minimal" UT computed perturbatively $H=\sum_{k=1}^{\infty}(1 / \Lambda)^{\kappa} H^{(\kappa)}$
- Only $\tilde{H}_{\text {nucl }}$ is needed below the pion production threshold
- We employ all additional UTs possible at a given order in the expansion
- Renormalizability \longrightarrow unambigous results for 4NF \& (static) 3NF upto N3O EE '06,'07; Bernard, EE, Krebs, Meißner '08

From $L_{\text {eff }}$ to nuclear forces/currents

Method of unitary transformation (Taketani, Mashida, Ohnuma, Okubo, EE, Glöckle, Meißner, Krebs, Kölling)

- Nuclear forces via UT (Fock space): $H \rightarrow \tilde{H}=U^{\dagger}(\square) U=\left(\begin{array}{cc}\tilde{H}_{\text {med }} & 0 \\ 0 & \tilde{H}_{\text {rest }}\end{array}\right)$
- „Minimal" UT computed perturbatively $H=\sum_{\kappa=1}^{\infty}(1 / \Lambda)^{\kappa} H^{(\kappa)}$
- Only $\tilde{H}_{\text {nucl }}$ is needed below the pion production threshold
- We employ all additional UTs possible at a given order in the expansion
- Renormalizability \longrightarrow unambigous results for 4NF \& (static) 3NF upto N³LO EE '06,'07; Bernard, EE, Krebs, Meißner '08
- Effective current operator
- „Bare" current $J^{\mu}(x)=\partial_{\nu} \frac{\partial \mathcal{L}_{\pi N \gamma}}{\partial\left(\partial_{\nu} \mathcal{A}_{\mu}\right)}-\frac{\partial \mathcal{L}_{\pi N \gamma}}{\partial \mathcal{A}_{\mu}}$
- Effective hadronic current $J_{\mu} \rightarrow \tilde{J}_{\mu}=U^{\dagger}$

$$
\left(\begin{array}{l|l}
& \\
\hline &
\end{array}\right) U=\left(\begin{array}{ll}
\tilde{j}_{\mu}^{\text {nud }} \\
& \\
&
\end{array}\right)
$$

- Need additional, \mathcal{A}_{μ}-dependent UTs $\left.\eta U^{\prime} \eta\right|_{\mathcal{A}_{\mu}=0}=1_{\eta}$ to enforce renormalizability

One-pion exchange current
 Kölling, EE, Krebs, Meißner '11

Loop diagrams with $\mathcal{L}_{\pi N}^{(1)}$-vertices

Tree-level diagrams with 1 insertion from $\mathcal{L}_{\pi N}^{(3)}$

All UV divergences must be absorbed in d_{i} 's and renormalization of the

LO current $\left(F_{\pi}, M_{\pi}\right)$

One-pion exchange current

Notation: $\left\langle\vec{p}_{1}{ }^{\prime} \vec{p}_{2}^{\prime}\right| J_{\text {complete }}^{\mu}\left|\vec{p}_{1} \vec{p}_{2}\right\rangle=\delta\left(\vec{p}_{1}^{\prime}+\vec{p}_{2}{ }^{\prime}-\vec{p}_{1}-\overrightarrow{p_{2}}-\vec{k}\right)\left[J^{\mu}+(1 \leftrightarrow 2)\right]$

Current density

$$
\begin{aligned}
\vec{J}_{1 \pi} & =\frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}}\left[\vec{q}_{1} \times \vec{q}_{2}\right]\left[\tau_{2}^{3} f_{1}(k)+\vec{\tau}_{1} \cdot \vec{\tau}_{2} f_{2}(k)\right]+\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3} \frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}}\left\{\vec{k} \times\left[\vec{q}_{2} \times \vec{\sigma}_{1}\right] f_{3}(k)\right. \\
& \left.+\vec{k} \times\left[\vec{q}_{1} \times \vec{\sigma}_{1}\right] f_{4}(k)+\vec{\sigma}_{1} \cdot \vec{q}_{1}\left(\frac{\vec{k}}{k^{2}}-\frac{\vec{q}_{1}}{q_{1}^{2}+M_{\pi}^{2}}\right) f_{5}(k)+\left[\frac{\vec{\sigma}_{1} \cdot \vec{q}_{1}}{q_{1}^{2}+M_{\pi}^{2}} \vec{q}_{1}-\vec{\sigma}_{1}\right] f_{6}(k)\right\}
\end{aligned}
$$

$$
\begin{aligned}
f_{1}(k) & =2 i e \frac{g_{A}}{F_{\pi}^{2}} \bar{d}_{8}, \quad f_{2}(k)=2 i e \frac{g_{A}}{F_{\pi}^{2}} \bar{d}_{9}, \quad f_{3}(k)=-i e \frac{g_{A}}{64 F_{\pi}^{4} \pi^{2}}\left[g_{A}^{3}(2 L(k)-1)+32 F_{\pi}^{2} \pi^{2} \bar{d}_{21}\right], \\
f_{4}(k) & =-i e \frac{g_{A}}{4 F_{\pi}^{2}} \bar{d}_{22}, \quad f_{5}(k)=-i e \frac{g_{A}^{2}}{384 F_{\pi}^{4} \pi^{2}}\left[2\left(4 M_{\pi}^{2}+k^{2}\right) L(k)+\left(6 \bar{l}_{6}-\frac{5}{3}\right) k^{2}-8 M_{\pi}^{2}\right], \\
f_{6}(k) & =-i e \frac{g_{A}}{F_{\pi}^{2}} M_{\pi}^{2} \bar{d}_{18},
\end{aligned}
$$

Charge density $\quad \rho_{1 \pi}=\frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}} \tau_{2}^{3}\left[\vec{\sigma}_{1} \cdot \vec{k} \vec{q}_{2} \cdot \vec{k} f_{7}(k)+\vec{\sigma}_{1} \cdot \vec{q}_{2} f_{8}(k)\right]+1 / m_{N}$-corrections (tree level)

$$
\begin{aligned}
f_{7}(k) & =e \frac{g_{A}^{4}}{64 F_{\pi}^{4} \pi}\left[A(k)+\frac{M_{\pi}-4 M_{\pi}^{2} A(k)}{k^{2}}\right] \\
f_{8}(k) & =e \frac{g_{A}^{4}}{64 F_{\pi}^{4} \pi}\left[\left(4 M_{\pi}^{2}+k^{2}\right) A(k)-M_{\pi}\right]
\end{aligned}
$$

One-pion exchange current
 Kölling, EE, Krebs, Meißner '11

Notation: $\left\langle\vec{p}_{1}{ }^{\prime} \vec{p}_{2}^{\prime}\right| J_{\text {complete }}^{\mu}\left|\vec{p}_{1} \vec{p}_{2}\right\rangle=\delta\left(\vec{p}_{1}^{\prime}+\vec{p}_{2}{ }^{\prime}-\vec{p}_{1}-\overrightarrow{p_{2}}-\vec{k}\right)\left[J^{\mu}+(1 \leftrightarrow 2)\right]$

Current density

$$
\begin{aligned}
\vec{J}_{1 \pi} & =\frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}}\left[\vec{q}_{1} \times \vec{q}_{2}\right]\left[\tau_{2}^{3} f_{1}(k)+\vec{\tau}_{1} \cdot \vec{\tau}_{2} f_{2}(k)\right]+\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3} \frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}}\left\{\vec{k} \times\left[\vec{q}_{2} \times \vec{\sigma}_{1}\right] f_{3}(k)\right. \\
& \left.+\vec{k} \times\left[\vec{q}_{1} \times \vec{\sigma}_{1}\right] f_{4}(k)+\vec{\sigma}_{1} \cdot \vec{q}_{1}\left(\frac{\vec{k}}{k^{2}}-\frac{\vec{q}_{1}}{q_{1}^{2}+M_{\pi}^{2}}\right) f_{5}(k)+\left[\frac{\vec{\sigma}_{1} \cdot \vec{q}_{1}}{q_{1}^{2}+M_{\pi}^{2}} \vec{q}_{1}-\vec{\sigma}_{1}\right] f_{6}(k)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}(k)=2 i e \frac{g_{A}}{F_{\pi}} \quad f_{2}(k)=2 i e \frac{g_{A}}{F_{\pi}^{2}} \quad f_{3}(k)=-i e \frac{g_{A}}{64 F_{\pi}^{4} \pi^{2}}\left[g_{A}^{3}(2 L(k)-1)+32 F_{\pi}^{2} \pi\left(d_{21}\right]\right), \\
& \left.f_{4}(k)=-i e \frac{g_{A}}{4 F_{\pi}^{2}} \quad f_{5}(k)=-i e \frac{g_{A}^{2}}{384 F_{\pi}^{4} \pi^{2}}\left[2\left(4 M_{\pi}^{2}+k^{2}\right) L(k)+\left(\bar{l}_{6}\right)-\frac{5}{3}\right) k^{2}-8 M_{\pi}^{2}\right], \\
& f_{6}(k)=-i e \frac{g_{A}}{F^{2}} M_{\pi}^{2} \sqrt{d_{18}} \text { Low-energy constants: } \bar{l}_{6}, \bar{d}_{18} \text { (fairly) well known; } \bar{d}_{8}, \bar{d}_{9}, \bar{d}_{21}, \bar{d}_{22} \text { - less } \\
& \text { well known (can, in principle, be fit to } \pi \text {-photoproduction data...) }
\end{aligned}
$$

Charge density $\quad \rho_{1 \pi}=\frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}} \tau_{2}^{3}\left[\vec{\sigma}_{1} \cdot \vec{k} \vec{q}_{2} \cdot \vec{k} f_{7}(k)+\vec{\sigma}_{1} \cdot \vec{q}_{2} f_{8}(k)\right]+1 / m_{N}$-corrections (tree level)

$$
\begin{aligned}
f_{7}(k) & =e \frac{g_{A}^{4}}{64 F_{\pi}^{4} \pi}\left[A(k)+\frac{M_{\pi}-4 M_{\pi}^{2} A(k)}{k^{2}}\right] \\
f_{8}(k) & =e \frac{g_{A}^{4}}{64 F_{\pi}^{4} \pi}\left[\left(4 M_{\pi}^{2}+k^{2}\right) A(k)-M_{\pi}\right]
\end{aligned}
$$

One-pion exchange current

Notation: $\left\langle\vec{p}_{1}{ }^{\prime} \vec{p}_{2}^{\prime}\right| J_{\text {complete }}^{\mu}\left|\vec{p}_{1} \vec{p}_{2}\right\rangle=\delta\left(\vec{p}_{1}^{\prime}+\vec{p}_{2}{ }^{\prime}-\vec{p}_{1}-\overrightarrow{p_{2}}-\vec{k}\right)\left[J^{\mu}+(1 \leftrightarrow 2)\right]$

Current density

$$
\begin{aligned}
\vec{J}_{1 \pi} & =\frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}}\left[\vec{q}_{1} \times \vec{q}_{2}\right]\left[\tau_{2}^{3} f_{1}(k)+\vec{\tau}_{1} \cdot \vec{\tau}_{2} f_{2}(k)\right]+\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3} \frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}}\left\{\vec{k} \times\left[\vec{q}_{2} \times \vec{\sigma}_{1}\right] f_{3}(k)\right. \\
& \left.+\vec{k} \times\left[\vec{q}_{1} \times \vec{\sigma}_{1}\right] f_{4}(k)+\vec{\sigma}_{1} \cdot \vec{q}_{1}\left(\frac{\vec{k}}{k^{2}}-\frac{\vec{q}_{1}}{q_{1}^{2}+M_{\pi}^{2}}\right) f_{5}(k)+\left[\frac{\vec{\sigma}_{1} \cdot \vec{q}_{1}}{q_{1}^{2}+M_{\pi}^{2}} \vec{q}_{1}-\vec{\sigma}_{1}\right] f_{6}(k)\right\}
\end{aligned}
$$

$$
\begin{aligned}
f_{1}(k) & =2 i e \frac{g_{A}}{F_{\pi}^{2}} \bar{d}_{8}, \quad f_{2}(k)=2 i e \frac{g_{A}}{F_{\pi}^{2}} \bar{d}_{9}, \quad f_{3}(k)=-i e \frac{g_{A}}{64 F_{\pi}^{4} \pi^{2}}\left[g_{A}^{3}(2 L(k)-1)+32 F_{\pi}^{2} \pi^{2} \bar{d}_{21}\right], \\
f_{4}(k) & =-i e \frac{g_{A}}{4 F_{\pi}^{2}} \bar{d}_{22}, \quad f_{5}(k)=-i e \frac{g_{A}^{2}}{384 F_{\pi}^{4} \pi^{2}}\left[2\left(4 M_{\pi}^{2}+k^{2}\right) L(k)+\left(6 \bar{l}_{6}-\frac{5}{3}\right) k^{2}-8 M_{\pi}^{2}\right], \\
f_{6}(k) & =-i e \frac{g_{A}}{F_{\pi}^{2}} M_{\pi}^{2} \bar{d}_{18},
\end{aligned}
$$

Charge density $\quad \rho_{1 \pi}=\frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}} \tau_{2}^{3}\left[\vec{\sigma}_{1} \cdot \vec{k} \vec{q}_{2} \cdot \vec{k} f_{7}(k)+\vec{\sigma}_{1} \cdot \vec{q}_{2} f_{8}(k)\right]+1 / m_{N}$-corrections (tree level)

$$
\begin{aligned}
f_{7}(k) & =e \frac{g_{A}^{4}}{64 F_{\pi}^{4} \pi}\left[A(k)+\frac{M_{\pi}-4 M_{\pi}^{2} A(k)}{k^{2}}\right] \\
f_{8}(k) & =e \frac{g_{A}^{4}}{64 F_{\pi}^{4} \pi}\left[\left(4 M_{\pi}^{2}+k^{2}\right) A(k)-M_{\pi}\right]
\end{aligned}
$$

One-pion exchange current

Notation: $\left\langle\vec{p}_{1}{ }^{\prime} \vec{p}_{2}{ }^{\prime}\right| J_{\text {complete }}^{\mu}\left|\overrightarrow{p_{1}} \vec{p}_{2}\right\rangle=\delta\left(\vec{p}_{1}{ }^{\prime}+\vec{p}_{2}{ }^{\prime}-\vec{p}_{1}-\overrightarrow{p_{2}}-\vec{k}\right)\left[J^{\mu}+(1 \leftrightarrow 2)\right]$

Current density

$$
\begin{aligned}
\vec{J}_{1 \pi} & =\frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}}\left[\vec{q}_{1} \times \vec{q}_{2}\right]\left[\tau_{2}^{3} f_{1}(k)+\vec{\tau}_{1} \cdot \vec{\tau}_{2} f_{2}(k)\right]+\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3} \frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}}\left\{\vec{k} \times\left[\vec{q}_{2} \times \vec{\sigma}_{1}\right] f_{3}(k)\right. \\
& \left.+\vec{k} \times\left[\vec{q}_{1} \times \vec{\sigma}_{1}\right] f_{4}(k)+\vec{\sigma}_{1} \cdot \vec{q}_{1}\left(\frac{\vec{k}}{k^{2}}-\frac{\vec{q}_{1}}{q_{1}^{2}+M_{\pi}^{2}}\right) f_{5}(k)+\left[\frac{\vec{\sigma}_{1} \cdot \vec{q}_{1}}{q_{1}^{2}+M_{\pi}^{2}} \vec{q}_{1}-\vec{\sigma}_{1}\right] f_{6}(k)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}(k)=2 i e \frac{g_{A}}{F_{\pi}^{2}} \bar{d}_{8}, \quad f_{2}(k)=2 i e \frac{g_{A}}{F_{\pi}^{2}} \bar{d}_{9}, \quad f_{3}(k)=-i e \frac{g_{A}}{64 F_{\pi}^{4} \pi^{2}}\left[g_{A}^{3}(2 L(k)-1)+32 F_{\pi}^{2} \pi^{2} \bar{d}_{21}\right. \\
& \left.f_{4}(k)=-i e \frac{g_{A}}{4 F_{\pi}^{2}} \bar{d}_{22}, \quad f_{5}(k)=-i e \frac{g_{A}^{2}}{384 F_{\pi}^{4} \pi^{2}} 2\left(4 M_{\pi}^{2}+k^{2}\right) L(k)+\left(6 \bar{l}_{6}-\frac{5}{3}\right) k^{2}-8 M_{\pi}^{2}\right]
\end{aligned}
$$

$$
f_{6}(k)=-i e \frac{g_{A}}{F_{\pi}^{2}} M_{\pi}^{2} \bar{d}_{18}
$$

Comparison with Pastore et al., PRC 80 (09) 034004: agree,

Charge density $\quad \rho_{1 \pi}=\frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}} \tau_{2}^{3}\left[\vec{\sigma}_{1} \cdot \vec{k} \vec{q}_{2} \cdot \vec{k} f_{7}(k)+\vec{\sigma}_{1} \cdot \vec{q}_{2} f_{8}(k)\right]+1 / m_{N}$-corrections (tree level)

$$
\begin{aligned}
f_{7}(k) & =e \frac{g_{A}^{4}}{64 F_{\pi}^{4} \pi}\left[A(k)+\frac{M_{\pi}-4 M_{\pi}^{2} A(k)}{k^{2}}\right] \\
f_{8}(k) & =e \frac{g_{A}^{4}}{64 F_{\pi}^{4} \pi}\left[\left(4 M_{\pi}^{2}+k^{2}\right) A(k)-M_{\pi}\right]
\end{aligned}
$$

One-pion exchange current
 Kölling, EE, Krebs, Meißner '11

Notation: $\left\langle\vec{p}_{1}{ }^{\prime} \vec{p}_{2}^{\prime}\right| J_{\text {complete }}^{\mu}\left|\vec{p}_{1} \vec{p}_{2}\right\rangle=\delta\left(\vec{p}_{1}^{\prime}+\vec{p}_{2}{ }^{\prime}-\vec{p}_{1}-\overrightarrow{p_{2}}-\vec{k}\right)\left[J^{\mu}+(1 \leftrightarrow 2)\right]$

Current density

$$
\begin{aligned}
\vec{J}_{1 \pi} & =\frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}}\left[\vec{q}_{1} \times \vec{q}_{2}\right]\left[\tau_{2}^{3} f_{1}(k)+\vec{\tau}_{1} \cdot \vec{\tau}_{2} f_{2}(k)\right]+\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3} \frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}}\left\{\vec{k} \times\left[\vec{q}_{2} \times \vec{\sigma}_{1}\right] f_{3}(k)\right. \\
& \left.+\vec{k} \times\left[\vec{q}_{1} \times \vec{\sigma}_{1}\right] f_{4}(k)+\vec{\sigma}_{1} \cdot \vec{q}_{1}\left(\frac{\vec{k}}{k^{2}}-\frac{\vec{q}_{1}}{q_{1}^{2}+M_{\pi}^{2}}\right) f_{5}(k)+\left[\frac{\vec{\sigma}_{1} \cdot \vec{q}_{1}}{q_{1}^{2}+M_{\pi}^{2}} \vec{q}_{1}-\vec{\sigma}_{1}\right] f_{6}(k)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}(k)=2 i e \frac{g_{A}}{F_{\pi}^{2}} \bar{d}_{8} \quad f_{2}(k)=2 i e \frac{g_{A}}{F_{\pi}^{2}} \bar{d}_{9}, \quad f_{3}(k)=-i e \frac{g_{A}}{64 F_{\pi}^{4} \pi^{2}}\left[g_{A}^{3}(2 L(k)-1)+32 F_{\pi}^{2} \pi^{2} \bar{d}_{21}\right) \\
& \left.f_{4}(k)=-i e \frac{g_{A}}{4 F_{\pi}^{2}} \bar{d}_{22} \quad f_{5}(k)=-i e \frac{g_{A}^{2}}{384 F_{\pi}^{4} \pi^{2}} 2\left(4 M_{\pi}^{2}+k^{2}\right) L(k)+\left(6 \bar{l}_{6}-\frac{5}{3}\right) k^{2}-8 M_{\pi}^{2}\right],
\end{aligned}
$$

$$
f_{6}(k)=-i e \frac{g_{A}}{F_{\pi}^{2}} M_{\pi}^{2} \bar{d}_{18}
$$

Comparison with Pastore et al., PRC 80 (09) 034004: agree, „slightly" disagree,

Charge density $\quad \rho_{1 \pi}=\frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}} \tau_{2}^{3}\left[\vec{\sigma}_{1} \cdot \vec{k} \vec{q}_{2} \cdot \vec{k} f_{7}(k)+\vec{\sigma}_{1} \cdot \vec{q}_{2} f_{8}(k)\right]+1 / m_{N}$-corrections (tree level)

$$
\begin{aligned}
f_{7}(k) & =e \frac{g_{A}^{4}}{64 F_{\pi}^{4} \pi}\left[A(k)+\frac{M_{\pi}-4 M_{\pi}^{2} A(k)}{k^{2}}\right] \\
f_{8}(k) & =e \frac{g_{A}^{4}}{64 F_{\pi}^{4} \pi}\left[\left(4 M_{\pi}^{2}+k^{2}\right) A(k)-M_{\pi}\right]
\end{aligned}
$$

One-pion exchange current
 Kölling, EE, Krebs, Meißner '11

Notation: $\left\langle\vec{p}_{1}^{\prime} \vec{p}_{2}^{\prime}\right| J_{\text {complete }}^{\mu}\left|\vec{p}_{1} \vec{p}_{2}\right\rangle=\delta\left(\vec{p}_{1}^{\prime}+\vec{p}_{2}^{\prime}-\vec{p}_{1}-\overrightarrow{p_{2}}-\vec{k}\right)\left[J^{\mu}+(1 \leftrightarrow 2)\right]$

Current density

$$
\begin{aligned}
\vec{J}_{1 \pi} & =\frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}}\left[\vec{q}_{1} \times \vec{q}_{2}\right]\left[\tau_{2}^{3} f_{1}(k)+\vec{\tau}_{1} \cdot \vec{\tau}_{2} f_{2}(k)\right]+\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3} \frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}}\left\{\vec{k} \times\left[\vec{q}_{2} \times \vec{\sigma}_{1}\right] f_{3}(k)\right. \\
& \left.+\vec{k} \times\left[\vec{q}_{1} \times \vec{\sigma}_{1}\right] f_{4}(k)+\vec{\sigma}_{1} \cdot \vec{q}_{1}\left(\frac{\vec{k}}{k^{2}}-\frac{\vec{q}_{1}}{q_{1}^{2}+M_{\pi}^{2}}\right) f_{5}(k)+\left[\frac{\vec{\sigma}_{1} \cdot \vec{q}_{1}}{q_{1}^{2}+M_{\pi}^{2}} \vec{q}_{1}-\vec{\sigma}_{1}\right] f_{6}(k)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}(k)=2 i e \frac{g_{A}}{F_{\pi}^{2}} \bar{d}_{8} \quad f_{2}(k)=2 i e \frac{g_{A}}{F_{\pi}^{2}} \bar{d}_{9}, \quad f_{3}(k)=-i e \frac{g_{A}}{64 F_{\pi}^{4} \pi^{2}} g_{A}^{3}(2 L(k)-1)-32 F_{\pi}^{2} \pi^{2} \bar{d}_{21} \\
& \left.\left.f_{4}(k)=-i e \frac{g_{A}}{4 F_{\pi}^{2}} \bar{d}_{22} \quad f_{5}(k)=-i e \frac{g_{A}^{2}}{384 F_{\pi}^{4} \pi^{2}} 2\left(4 M_{\pi}^{2}+k^{2}\right) L(k)+6 \bar{l}_{6}-\frac{5}{3}\right) k^{2}-8 M_{\pi}^{2}\right],
\end{aligned}
$$

$$
f_{6}(k)=-i e \frac{g_{A}}{F_{\pi}^{2}} M_{\pi}^{2} \bar{d}_{18}
$$

Comparison with Pastore et al., PRC 80 (09) 034004: agree, „slightly" disagree, completely disagree

Charge density $\quad \rho_{1 \pi}=\frac{\vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}} \tau_{2}^{3}\left[\vec{\sigma}_{1} \cdot \vec{k} \vec{q}_{2} \cdot \vec{k} f_{7}(k)+\vec{\sigma}_{1} \cdot \vec{q}_{2} f_{8}(k)\right]+1 / m_{N}$-corrections (tree level)

$$
\begin{aligned}
& f_{7}(k)=e \frac{g_{A}^{4}}{64 F_{\pi}^{4} \pi}\left[A(k)+\frac{M_{\pi}-4 M_{\pi}^{2} A(k)}{k^{2}}\right] \\
& f_{8}(k)=e \frac{g_{A}^{4}}{64 F_{\pi}^{4} \pi}\left[\left(4 M_{\pi}^{2}+k^{2}\right) A(k)-M_{\pi}\right]
\end{aligned}
$$

completely missing in
Pastore et al., PRC 80 (09) 034004

Two-pion exchange current density

$$
\longleftarrow \vec{J}=e \frac{g_{A}^{2} M_{\pi}^{7}}{128 \pi^{3} F_{\pi}^{4}}\left[\vec{\nabla}_{10}\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3}+2\left[\vec{\nabla}_{10} \times \vec{\sigma}_{2}\right] \tau_{1}^{3}\right] \delta\left(\vec{x}_{20}\right) \frac{K_{1}\left(2 x_{10}\right)}{x_{10}^{2}}
$$

$$
\vec{J}=-e \frac{g_{A}^{4} M_{\pi}^{7}}{256 \pi^{3} F_{\pi}^{4}}\left(3 \nabla_{10}^{2}-8\right)\left[\vec{\nabla}_{10}\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3}+2\left[\vec{\nabla}_{10} \times \vec{\sigma}_{2}\right] \tau_{1}^{3}\right] \delta\left(\vec{x}_{20}\right) \frac{K_{0}\left(2 x_{10}\right)}{x_{10}}
$$

$$
+e \frac{g_{A}^{4} M_{\pi}^{7}}{32 \pi^{3} F_{\pi}^{4}}\left[\vec{\nabla}_{10} \times \vec{\sigma}_{1}\right] \tau_{2}^{3} \delta\left(\vec{x}_{20}\right) \frac{K_{1}\left(2 x_{10}\right)}{x_{10}^{2}},
$$

$$
\vec{J}=-e \frac{M_{\pi}^{7}}{512 \pi^{4} F_{\pi}^{4}}\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3}\left(\vec{\nabla}_{10}-\vec{\nabla}_{20}\right) \frac{K_{2}\left(x_{10}+x_{20}+x_{12}\right)}{\left(x_{10} x_{20} x_{12}\right)\left(x_{10}+x_{20}+x_{12}\right)}
$$

$\vec{J}=-e \frac{g_{A}^{2} M_{\pi}^{7}}{256 \pi^{4} F_{\pi}^{4}}\left(\vec{\nabla}_{10}-\vec{\nabla}_{20}\right)\left[\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3} \vec{\nabla}_{12} \cdot \vec{\nabla}_{20}-2 \tau_{1}^{3} \vec{\sigma}_{2} \cdot\left[\vec{\nabla}_{12} \times \vec{\nabla}_{20}\right]\right]$ $\times \frac{K_{1}\left(x_{10}+x_{20}+x_{12}\right)}{\left(x_{10} x_{20} x_{12}\right)}$,

\checkmark parameter-free results,
\checkmark (almost) complete agreement with Pastore et al.

Two-pion exchange charge density
 Kölling, EE, Krebs, Meißner '09

Short-range currents

\Varangle

8

Current density

$$
\begin{aligned}
\vec{J}_{\text {contact }} & =e \frac{i}{16}\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3}\left[\left(C_{2}+3 C_{4}+C_{7}\right) \vec{q}_{1}-\left(-C_{2}+C_{4}+C_{7}\right)\left(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right) \vec{q}_{1}+C_{7}\left(\vec{\sigma}_{2} \cdot \vec{q}_{1} \vec{\sigma}_{1}+\vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{2}\right)\right] \\
& -e \frac{C_{5} i}{16} \tau_{1}^{3}\left[\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \times \vec{q}_{1}\right]+i e L_{1} \tau_{1}^{3}\left[\left(\vec{\sigma}_{1}-\vec{\sigma}_{2}\right) \times \vec{k}\right]+i e L_{2}\left[\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \times \vec{q}_{1}\right]
\end{aligned}
$$

Charge density $\rho_{\text {contact }}=C_{T} \tau_{1}^{3}\left[\vec{\sigma}_{1} \cdot \vec{k} \vec{\sigma}_{2} \cdot \vec{k} f_{9}(k)+\vec{\sigma}_{1} \cdot \vec{\sigma}_{2} f_{10}(k)\right]$
with

$$
f_{9}(k)=e \frac{g_{A}^{2}}{32 F_{\pi}^{2} \pi}\left(A(k)+\frac{M_{\pi}-4 M_{\pi}^{2} A(k)}{k^{2}}\right), \quad f_{10}(k)=e \frac{g_{A}^{2}}{32 F_{\pi}^{2} \pi}\left(M_{\pi}-\left(4 M_{\pi}^{2}+3 k^{2}\right) A(k)\right)
$$

Short-range currents

X

 2
$x+$

Current density

$$
\begin{array}{r}
\vec{J}_{\text {contact }}=e \frac{i}{16}\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3}\left[\left(C_{2}+3 C_{4}+C_{7}\right) \vec{q}_{1}-\left(-C_{2}+C_{4}+C_{7}\right)\left(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right) \vec{q}_{1}+C_{7}\left(\vec{\sigma}_{2} \cdot \vec{q}_{1} \vec{\sigma}_{1}+\vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{2}\right)\right] \\
\left.\left.-e \frac{C_{5} i}{16} \tau_{1}^{3}\left[\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \times \vec{q}_{1}\right]+i L_{1}\right)_{1}^{3}\left[\left(\vec{\sigma}_{1}-\vec{\sigma}_{2}\right) \times \vec{k}\right]+i L_{2}\right)\left[\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \times \vec{q}_{1}\right] \\
\text { Two new LECS } L_{1,2}\left(C_{i}\right. \text { s are the same as in the potential) }
\end{array}
$$

Charge density $\rho_{\text {contact }}=C_{T} \tau_{1}^{3}\left[\vec{\sigma}_{1} \cdot \vec{k} \vec{\sigma}_{2} \cdot \vec{k} f_{9}(k)+\vec{\sigma}_{1} \cdot \vec{\sigma}_{2} f_{10}(k)\right]$
with

$$
f_{9}(k)=e \frac{g_{A}^{2}}{32 F_{\pi}^{2} \pi}\left(A(k)+\frac{M_{\pi}-4 M_{\pi}^{2} A(k)}{k^{2}}\right), \quad f_{10}(k)=e \frac{g_{A}^{2}}{32 F_{\pi}^{2} \pi}\left(M_{\pi}-\left(4 M_{\pi}^{2}+3 k^{2}\right) A(k)\right)
$$

Short-range currents

X

\neq

8
ϕ
人
"
\otimes
8

 2

Current density

$$
\begin{array}{r}
\vec{J}_{\text {contact }}=e \frac{i}{16}\left[\vec{\tau}_{1} \times \vec{\tau}_{2}\right]^{3}\left[\left(C_{2}+3 C_{4}+C_{7}\right) \vec{q}_{1}-\left(-C_{2}+C_{4}+C_{7}\right)\left(\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right) \vec{q}_{1}+C_{7}\left(\vec{\sigma}_{2} \cdot \vec{q}_{1} \vec{\sigma}_{1}+\vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{2}\right)\right] \\
\left.\left.-e \frac{C_{5} i}{16} \tau_{1}^{3}\left[\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \times \vec{q}_{1}\right]+i L_{1}\right)_{1}^{3}\left[\left(\vec{\sigma}_{1}-\vec{\sigma}_{2}\right) \times \vec{k}\right]+i L_{2}\right)\left[\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \times \vec{q}_{1}\right] \\
\text { Two new LECS } L_{1,2}\left(C_{i}\right. \text { s are the same as in the potential) }
\end{array}
$$

Pion loop contributions differ from the ones by Pastore et al.
Charge density $\rho_{\text {contact }}=C_{T} \tau_{1}^{3}\left[\vec{\sigma}_{1} \cdot \vec{k} \vec{\sigma}_{2} \cdot \vec{k} f_{9}(k)+\vec{\sigma}_{1} \cdot \vec{\sigma}_{2} f_{10}(k)\right]$
with

$$
f_{9}(k)=e \frac{g_{A}^{2}}{32 F_{\pi}^{2} \pi}\left(A(k)+\frac{M_{\pi}-4 M_{\pi}^{2} A(k)}{k^{2}}\right), \quad f_{10}(k)=e \frac{g_{A}^{2}}{32 F_{\pi}^{2} \pi}\left(M_{\pi}-\left(4 M_{\pi}^{2}+3 k^{2}\right) A(k)\right)
$$

Em currents \& the deuteron elastic FFs

Meißner, Walzl, Phillips, ...

- FFs of the deuteron:
$G_{M}=-\frac{1}{\sqrt{2 \eta}|e|}\langle 1| J^{+}|0\rangle, \quad G_{Q}=\frac{1}{2 \eta|e| m_{d}^{2}}(\langle 0| \rho|0\rangle-\langle 1| \rho|1\rangle), \quad G_{C}=\frac{1}{3|e|}(\langle 1| \rho|1\rangle+\langle 0| \rho|0\rangle+\langle-1| \rho|-1\rangle)$
- Using exp. data for 1N FFs as input allows to probe nuclear structure effects Phillips '03
- Most of the exchange current/charge operators are isovectors. The only relevant isoscalar pieces are:

$$
\begin{aligned}
& \vec{J}_{1 \pi}=2 i e \frac{g_{A}}{F_{\pi}^{2}} \vec{d}_{9} \vec{\tau}_{1} \cdot \vec{\tau}_{2} \frac{\vec{\sigma}_{2} \cdot \vec{q}_{2} \vec{q}_{1} \times \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}} \\
& \rho_{1 \pi}=\frac{e g_{A}^{2}}{16 F_{\pi}^{2} m_{N}} \vec{\tau}_{1} \cdot \vec{\tau}_{2}\left[\left(1-2 \bar{\beta}_{9}\right) \frac{\vec{\sigma}_{1} \cdot \vec{k} \vec{\sigma}_{2} \cdot \vec{q}_{2}}{q_{2}^{2}+M_{\pi}^{2}}+\left(2 \bar{\beta}_{8}-1\right) \frac{\vec{\sigma}_{1} \cdot \vec{q}_{2} \vec{\sigma}_{2} \cdot \vec{q}_{2}}{\left(q_{2}^{2}+M_{\pi}^{2}\right)^{2}} \vec{q}_{2} \cdot \vec{k}_{1}\right] \\
& \vec{J}_{\text {contact }}=i e L_{2}\left[\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right) \times \vec{q}_{1}\right]
\end{aligned}
$$

- The constants $\bar{\beta}_{8,9}$ parametrize the unitary ambiguity \& have to be chosen consistently with the potential Friar '80, Adam, Goller, Arenhövel '93, EE, Glöckle, Meißner '04
- The LECs \bar{d}_{9}, L_{2} contribute to the magnetic FF

Em currents \& the deuteron elastic FFs

Phillips '07

(from Phillips, J. Phys. G 34 (2007) 365)

- G_{C} : parameter-free prediction; $G_{C} / G_{Q}: 1$ short-range term fitted to the quadrupole moment;
- In both cases 1 N FFs used as input...

Em currents \& the deuteron elastic FFs

Kölling, EE, Phillips, in preparation

IA and exchange current contributions

- 1 N form factors from Belushkin, Hammer, Meißner '07
- \bar{d}_{9}, L_{2} fitted to the deuteron magnetic moment and FF for q < 400 MeV :

$$
\bar{d}_{9}=-0.01 \ldots 0.01 \mathrm{GeV}^{-2} \quad L_{2}=0.28 \ldots 0.48 \mathrm{GeV}^{-4} \quad \text { (NNLO WF) }
$$

$$
\text { Pion photoproduction: } \bar{d}_{9}=-0.06 \mathrm{GeV}^{-2} \text { Gasparyan, Lutz '10 }
$$

Em currents \& rad. neutron capture

LECs „determined" assuming Δ-dominance + magnetic moments of ${ }^{2} \mathrm{H},{ }^{3} \mathrm{H},{ }^{3} \mathrm{He}+\sigma_{n p}^{\gamma}$
\Longrightarrow predictions for nd, $\mathrm{n}^{3} \mathrm{He}$ radiative capture reactions for thermal neutrons (MEC dominated)

related recent work: Lazauskas, Song, Park ‘09

Deuteron photodisintegration

short-range \& (subleading) 1π-exchange terms still to be included

Deuteron photodisintegration
 Rozpedzik, Golak, Kölling, EE, Skibinski, Witala, Krebs '11

Cross section and photon analyzing power at $\mathrm{E}_{\gamma}=30 \mathrm{MeV}$

Deuteron tensor analyzing powers

large sensitivity to MEC; short-range \& 1π-exchange terms still to be included

${ }^{3}$ He 2-body photodisintegration
 Rozpedzik, Golak, Kölling, EE, Skibinski, Witala, Krebs '11

Cross section and photon analyzing power at $\mathrm{E}_{\mathrm{Y}}=20 \mathrm{MeV}$

large sensitivity to MEC; short-range \& 1π-exchange terms still to be included

Reactions involving pions

- Pion-deuteron scattering and pion-nucleon scattering lengths

Weinberg'92, Beane et al.'93, Baru et al.'04,'11, Liebig'10

- Pion production in NN collisions

Cohen et al.'96; Dmitrasinovic et al.'99; da Rocha et al.'00; Hanhart et al.'01,'02, Baru et al.'09, Filin et al. '12

- $\mathrm{np} \rightarrow \mathrm{d} \pi^{0}$ and the strong nucleon mass shift

Niskanen ‘99; van Kolck et al. '00; Bolton, Miller ‘09; Filin, Baru, E.E., Haidenbauer, Hanhart, Kudryavtsev, Meißner ‘09

- Pion photo/electroproduction off light nuclei

Beane, Bernard, Lee, Meißner, van Kolck, Krebs, Lenkewitz EE, Hammer

- $\gamma \mathrm{dl} \rightarrow \pi^{+} n \mathrm{n}$ and $n n$ scattering length

Lensky, Baru, EE, Hanhart, Haidenbauer, Kudryavtsev, Meißner '07

Pion-deuteron scattering

Pion-nucleon amplitude at threshold (in the isospin limit): $T_{\pi N}^{b a} \propto\left[\delta^{a b} a^{+}+i \epsilon^{b a c} \tau^{c} a^{-}\right]$ Recent data on hadronic atoms:

$$
\begin{array}{ll}
\pi H: & \epsilon_{1 s}=(-7.120 \pm 0.012) \mathrm{eV}, \quad \Gamma_{1 s}=(0.823 \pm 0.019) \mathrm{eV} \quad \text { Gotta et al., Lect. Notes. Phys. } 745 \text { (08) } 165 \\
\pi D: & \epsilon_{1 s}^{D}=(2.356 \pm 0.031) \mathrm{eV} \quad \text { Strauch et al., Eur. Phys. J A47 (11) } 88
\end{array}
$$

Use chiral EFT to extract information on a^{+}and a^{-}from $a_{\pi d}$:
Weinberg '92; Beane et al.' 98 ,'03; Liebig et al.'11; Meißner et al. '06; Baru et al. '04-'11;...

- careful analysis of IB effects
- radiative corrections included
- the scale $\sqrt{M_{\pi} m_{N}}$ must be taken into account (3-body singularity, dispersive corrections)

Pion production in NN collisions

Considerably more challenging due to the appearance of a new „soft" scale $\quad|\vec{p}| \gtrsim \sqrt{M_{\pi} m_{N}} \sim 350 \mathrm{MeV}$
\rightarrow slower convergence of the chiral expansion
 (expansion parameter $\sqrt{M_{\pi} m_{N}} / \Lambda_{\chi}$ vs M_{π} / Λ_{χ})

State-of-the-art

- hybrid approach (EFT description of the 2N system for $|\vec{p}| \sim \sqrt{M_{\pi} m_{N}}$ not yet available)
- $\Delta(1232)$ isobar plays an important role \rightarrow must be included as an explicit DOF
- s-wave pion production worked out up to NLO Cohen et al.' 96 ; Dmitrasinovic et al.' 99 ; da Rocha et al.'00; Hanhart et al.'01,'02

- proper separation of irred. contributions crucial! Lensky et al. '01
- NNLO contributions (no Δ) worked out recently

p-wave π-production and the D-term
 Hanhart, van Kolck, Miller '00; Baru, EE, Haidenbauer, Hanhart, Kudryavtsev, Lensky, Meißner '09

- Loops start to contribute at $\mathrm{N}^{3} \mathrm{LO}$
- Up to N^{2} LO, D is the only unknown LEC
- Simultaneous description of $p n \rightarrow p p \pi^{-}, p p \rightarrow p n \pi^{+}$and $p p \rightarrow d \pi^{+}$

LO

nontrivial consistency check of chiral EFT

$$
\begin{aligned}
\left|\vec{p}^{\prime}\right| \sim M_{\pi} & \Rightarrow \\
|\vec{p}| \sim \sqrt{M_{\pi} m_{N}} & \Rightarrow
\end{aligned}
$$

Reaction $\mathrm{pn} \rightarrow \mathrm{pp} \pi$

(data from TRIUMF and PSI)

Reaction $\mathrm{pp} \rightarrow \mathrm{d} \pi^{+}$

\longrightarrow overall best description for $d=3$

Isospin breaking \& few-N systems

Origins of isospin breaking in the Standard Model: $\quad m_{u} \neq m_{d}$, photons

Isospin breaking \& few-N systems

Origins of isospin breaking in the Standard Model: $\quad m_{u} \neq m_{d}$, photons

- Manifestation in the hadron spectrum: mass splittings

$$
\begin{gathered}
M_{\pi^{ \pm}}=139.57 \mathrm{MeV}, \quad M_{\pi^{0}}=134.98 \mathrm{MeV} \leftarrow \text { mainly of electromagnetic origin } \\
m_{p}=938.27 \mathrm{MeV}, \quad m_{n}=939.57 \mathrm{MeV} \quad \leftarrow \text { both strong and electromagnetic } \\
\delta m_{N}^{\text {str }} \equiv\left(m_{n}-m_{p}\right)^{\text {str }}=2.05 \pm 0.3 \mathrm{MeV} \text { Gasser, Leutwyler' } 82 \text { (Cottingham sum rule) } \\
\delta m_{N}^{\mathrm{em}} \equiv\left(m_{n}-m_{p}\right)^{\mathrm{em}}=-0.76 \pm 0.3 \mathrm{MeV}
\end{gathered}
$$

Isospin breaking \& few-N systems

Origins of isospin breaking in the Standard Model: $\quad m_{u} \neq m_{d}$, photons

- Manifestation in the hadron spectrum: mass splittings

$$
\begin{gathered}
M_{\pi^{ \pm}}=139.57 \mathrm{MeV}, \quad M_{\pi^{0}}=134.98 \mathrm{MeV} \quad \leftarrow \text { mainly of electromagnetic origin } \\
m_{p}=938.27 \mathrm{MeV}, \quad m_{n}=939.57 \mathrm{MeV} \quad \leftarrow \text { both strong and electromagnetic } \\
\delta m_{N}^{\text {str }} \equiv\left(m_{n}-m_{p}\right)^{\text {str }}=2.05 \pm 0.3 \mathrm{MeV} \text { Gasser, Leutwyler' } 82 \text { (Cottingham sum rule) } \\
\delta m_{N}^{\mathrm{em}} \equiv\left(m_{n}-m_{p}\right)^{\mathrm{em}}=-0.76 \pm 0.3 \mathrm{MeV}
\end{gathered}
$$

Different (strong) forces between nn, np and pp van Kolck, Friar, Niskanen, Kaiser, EE, Meißner, ...

Manifestations

- differences in NN phase shifts,
- BE differences in mirror nuclei (CSB)

$$
\Xi_{3 H e}-\sqsubset_{3 H}: \quad \begin{array}{|ccccc|cc|}
\hline \text { Coulomb } & \text { Breit } & \text { K.E. } & \text { Two-Body } & \text { Three-body } & \text { Theory } & \text { Experiment } \\
\hline 648 & 28 & 14 & 65(22) & 5 & 760(22) & 764 \\
\hline
\end{array}
$$

Isospin breaking \& few-N systems

The challenge: can one extract the strong nucleon mass shift from CSB hadronic reactions?

Isospin breaking \& few-N systems

The challenge: can one extract the strong nucleon mass shift from CSB hadronic reactions?

- $d d \rightarrow \alpha \pi^{0}$ cross section measurement at IUCF @ 228.5/231.8 MeV Stephenson et al. '03

$$
\sigma=12.7 \pm 2.2 / 15.1 \pm 3.1 \mathrm{pb}
$$

Theoretical analysis challenging; first estimations yield the right order of magnitude.
Gardestig et al. '04; Nogga et al.'06

Isospin breaking \& few-N systems

The challenge: can one extract the strong nucleon mass shift from

 CSB hadronic reactions?- $d d \rightarrow \alpha \pi^{0}$ cross section measurement at IUCF @ $228.5 / 231.8 \mathrm{MeV}$ Stephenson et al. '03

$$
\sigma=12.7 \pm 2.2 / 15.1 \pm 3.1 \mathrm{pb}
$$

Theoretical analysis challenging; first estimations yield the right order of magnitude.
Gardestig et al. '04; Nogga et al. '06

- forward-backward asymetry in $n p \rightarrow d \pi^{0} @ 279.5 \mathrm{MeV}$ (TRIUMF) Opper et al. '03

$$
A_{\mathrm{fb}}=\frac{\int[d \sigma / d \Omega(\theta)-d \sigma / d \Omega(\pi-\theta)] d[\cos \theta]}{\int[d \sigma / d \Omega(\theta)+d \sigma / d \Omega(\pi-\theta)] d[\cos \theta]}=[17.2 \pm 8(\mathrm{stat}) \pm 5.5(\mathrm{sys})] \times 10^{-4}
$$

$n p \rightarrow d r^{0} \&$ the np mass difference

Bolton, Miller '09; Filin, Baru, E.E., Haidenbauer, Hanhart, Kudryavtsev, Meißner '09

$$
\frac{d \sigma}{d \Omega}=A_{0}+\underbrace{A_{1} P_{1}\left(\cos \theta_{\pi}\right)}+A_{2} P_{2}\left(\cos \theta_{\pi}\right)+\ldots \longrightarrow A_{f b} \simeq \frac{A_{1}}{2 A_{0}}
$$

gives rise to A_{fb}, nonzero only for $p n \rightarrow d \pi^{0}$ due to interference of IB and IC amplitudes

- A_{0} can be determined from the pionic deuterium lifetime measurement @ PSI:

$$
\sigma\left(n p \rightarrow d \pi^{0}\right)=\frac{1}{2} \sigma\left(n n \rightarrow d \pi^{-}\right)=\frac{1}{2} \times 252_{-11}^{+5} \eta[\mu \mathrm{~b}] \longrightarrow A_{0}=10.0_{-0.4}^{+0.2} \eta[\mu \mathrm{~b}]
$$

- A_{1} at LO: $\quad A_{1}=\frac{1}{128 \pi^{2}} \frac{\eta M_{\pi}}{p\left(M_{\pi}+m_{d}\right)^{2}} \Re[\underbrace{\left(M_{1 \mathrm{~S}_{0} \rightarrow{ }^{3} \mathrm{~S}_{1}, \mathrm{p}}+\frac{2}{3} M_{1_{\mathrm{D}_{2} \rightarrow 3} \mathrm{~S}_{1}, \mathrm{p}}\right)} M_{1}^{*}{ }_{\mathrm{P}_{1} \rightarrow 3} \mathrm{~S}_{1}, \mathrm{~s}]$

IC amplitudes calculated at NLO Baru et al.'09

Our result: $\quad A_{\mathrm{fb}}^{\mathrm{LO}}=(11.5 \pm 3.5) \times 10^{-4} \delta m_{N}^{\text {str }} / \mathrm{MeV}$

$$
\longrightarrow \delta m_{N}^{\mathrm{str}}=1.5 \pm 0.8 \text { (exp.) } \pm 0.5 \text { (th.) } \mathrm{MeV}
$$

Lattice: $\delta m_{N}^{\text {str }}=2.26 \pm 0.57 \pm 0.42 \pm 0.10 \mathrm{MeV}$ Beane et al. 07

Summary \& outlook

Electromagnetic currents

- worked out at leading loop order (ready-to-use expressions available)
- can be tested e.g. in ${ }^{2} \mathrm{H} /{ }^{3} \mathrm{He}$ photodisintegration

To be done: determination of LECs, already converged? (higher-orders/ Δ), complete calculations including short-range terms, ...

Reactions involving pions

- precision calculation of pion-deuteron scattering
- pioneering studies of pion production in NN collisions
- great success of a theory: strong nucleon mass shift from $A_{f b}$

To be done: pion reactions with heavier nuclei, higher orders in pion production and extension of nuclear chiral EFT beyond the pion production threshold, ...

Also good progress on topics not covered (Compton scatt., axial currents, ...)

