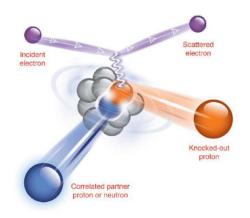


Universality of short-range nucleon-nucleon correlations



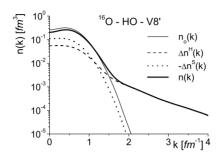
Hans Feldmeier Thomas Neff Wataru Horiuchi Yasuyuki Suzuki

First EMMI Program, 2012-04-16 to 2012-05-11

The Extreme Matter Physics of Nuclei: From Universal Properties to Neutron-Rich Extremes

Motivation

Deuteron dumbbell **Argonne Potential** short-range repulsion, tensor no good for SM or HF Argonne group, RevModPhys70(1998)743

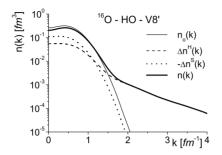


High momentum tails (real?) HF and SM can not have those Alvioli et al. PRC72(2005)054310

Motivation

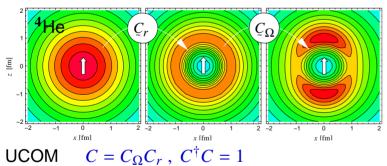
Deuteron dumbbell **Argonne Potential** short-range repulsion, tensor no good for SM or HF

Argonne group, RevModPhys70(1998)743



High momentum tails (real?) HF and SM can not have those

Alvioli et al. PRC72(2005)054310



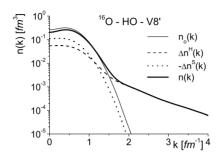
imprint short-range correlations tame the NN-interaction keep phase-shifts

Feldmeier, Neff, Roth, NPA632(1998)61, NPA713(2003)311

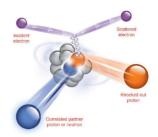
Motivation

Deuteron dumbbell **Argonne Potential** short-range repulsion, tensor no good for SM or HF

Argonne group, RevModPhys70(1998)743

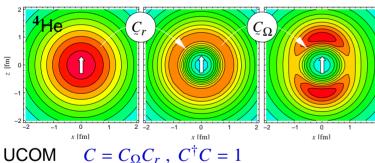


High momentum tails (real?) HF and SM can not have those Alvioli et al. PRC72(2005)054310



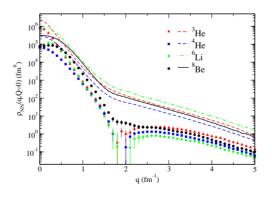
back-to-back high k p-p pairs observed Piasetzky et al.

PRL97(2006)162504



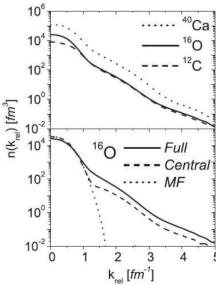
imprint short-range correlations tame the NN-interaction keep phase-shifts

Feldmeier, Neff, Roth, NPA632(1998)61, NPA713(2003)311



 k_{rel} -distribution different for p-n and p-p n(k_{rel}) similar for all nuclei universal?

Schiavilla et al. PRL98(2007)132501



Alvioli et al. PRL100(2008)162503

- Motivation
- Two-body densities of exact many-body states ²H, ³H, ³He, ⁴He, ⁴He* as function of relative distance r and relative momentum k for different S,T channels
- At short distance two-body densities are one-to-one cast of potential (AV8')
- Perfect universality up to $r \leq 1$ fm and $k \geq 3$ fm⁻¹
- Correlations induced by UCOM $\hat{C} = \hat{C}_{\Omega}\hat{C}_r$
- No-Core Shell Model results when softening the interaction

Results taken from: Feldmeier, Horiuchi, Neff, Suzuki, PRC 84(2011)054003

Many-Body States

■ Given Hamiltonian $\hat{H} = \hat{T} + \hat{V}_{NN}$ two-body interaction \hat{V}_{NN} = Argonne V8'

Solve many-body Schrödinger equation exactly (correlated Gaussian basis):

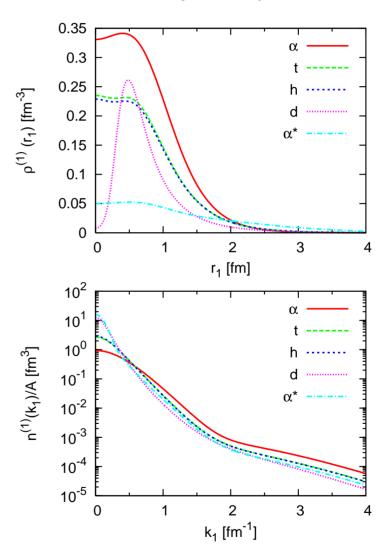
$$\hat{H} \mid \Psi; JM \rangle = E \mid \Psi; JM \rangle$$

• exact many-body eigenstates $|\Psi;JM\rangle$ which contain all many-body correlations induced by V_{NN} (short-, middle- and long-ranged)

We investigate five many-body states $|\Psi;JM\rangle$

$$\alpha$$
 = ⁴He ground state
t = ³H
h = ³He
d = ²H
 α *= excited 0⁺ (20.25 MeV) state of ⁴He.

one-body density



one-body momentum density

Two-Body Densities

lacktriangle Exact many-body state $|\Psi;JM\rangle$ contains all many-body correlations induced by \hat{V}_{NN}

Two-body density as function of distance \mathbf{r} between nucleon pair with spin S, M_S and isospin T, M_T :

$$\rho_{SM_S,TM_T}^{\text{rel}}(\mathbf{r}) = \frac{1}{2J+1} \sum_{M} \langle \Psi; JM | \sum_{i< j}^{A} \hat{P}_{ij}^{SM_S} \hat{P}_{ij}^{TM_T} \delta^3(\hat{\mathbf{r}}_i - \hat{\mathbf{r}}_j - \mathbf{r}) | \Psi; JM \rangle$$

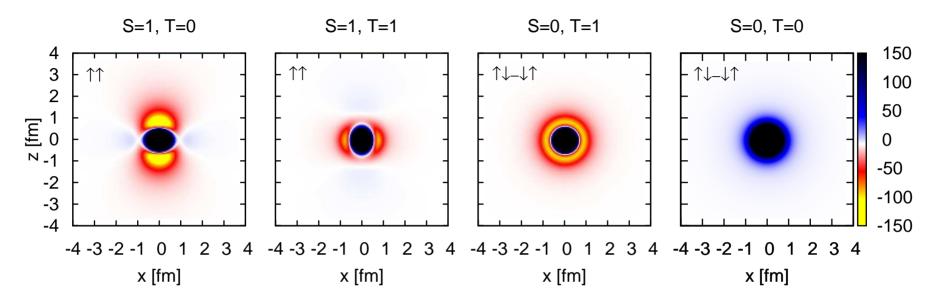
$$\qquad \rho_{S,T}^{\rm rel}(r) = \sum_{M_S, M_T} \rho_{SM_S, TM_T}^{\rm rel}(\mathbf{r})$$

Two-body momentum density as function of relative momentum \mathbf{k} between nucleon pair with spin S, M_S and isospin T, M_T :

$$n_{SM_S,TM_T}^{\text{rel}}(\mathbf{k}) = \frac{1}{2J+1} \sum_{M} \langle \Psi; JM \mid \sum_{i < j}^{A} \hat{P}_{ij}^{SM_S} \hat{P}_{ij}^{TM_T} \delta^3(\frac{1}{2}(\hat{\mathbf{k}}_i - \hat{\mathbf{k}}_j) - \mathbf{k}) \mid \Psi; JM \rangle$$

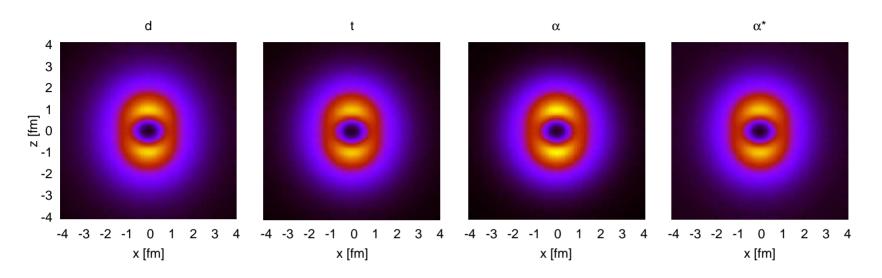
$$\qquad n_{S,T}^{\text{rel}}(k) = \sum_{M_S, M_T} n_{SM_S, TM_T}^{\text{rel}}(\mathbf{k})$$

Argonne V8' Potential

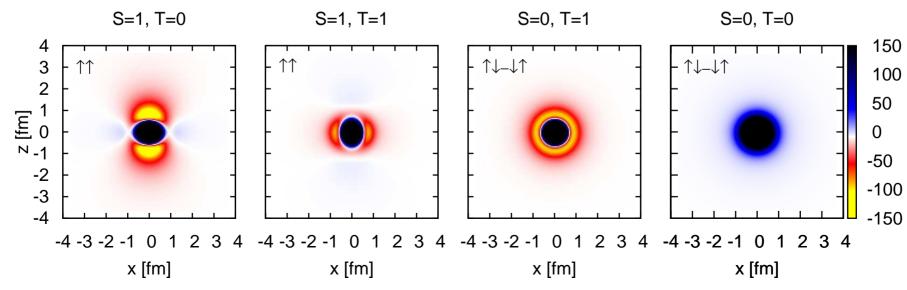


Argonne V8' in different spin-isospin channels as a function of distance vector $\mathbf{r} = (x, y = 0, z)$. In the S=1 channels the total spin is aligned with the z axis. Units are in MeV.

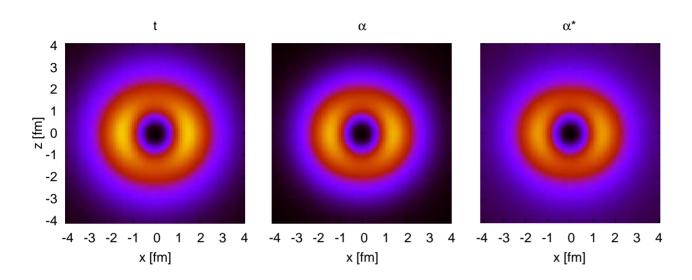
Two-body density for $S = 1, M_S = 1, T = 0$ pairs



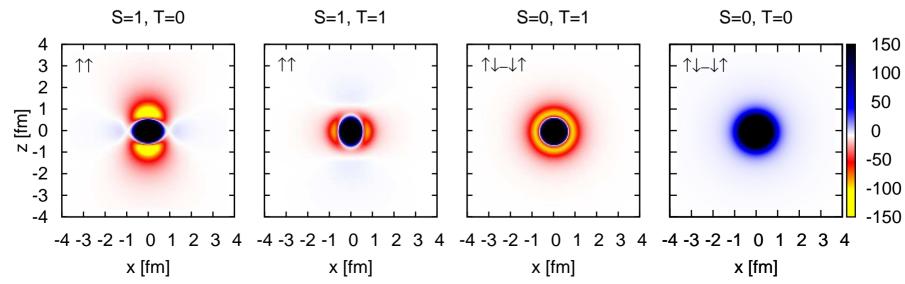
Two-body densities in coordinate space for a pair of nucleons with $S=1, M_S=1$ and T=0in ground states of ${}^{2}H = d$, ${}^{3}H = t$ and ${}^{4}He = \alpha$ and the 20.21 MeV excited state of ${}^{4}He = \alpha^{*}$. Densities have rotational symmetry around the *z* axis.



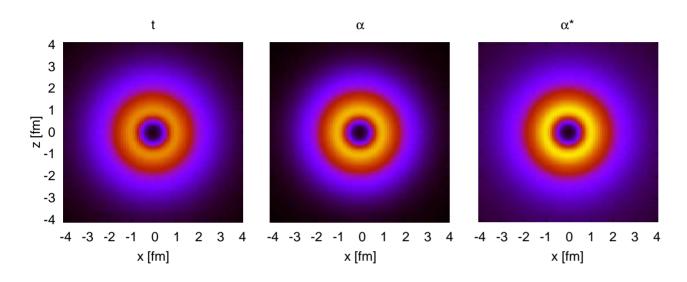
Two-body density for $S = 1, M_S = 1, T = 1$ pairs



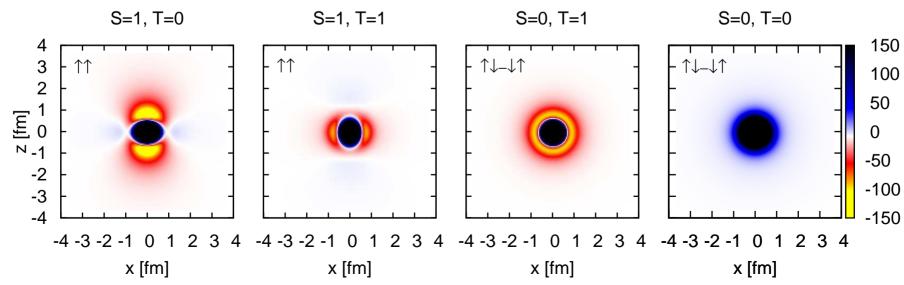
Two-body densities in coordinate space for a pair of nucleons with $S=1, M_S=1$ and T=1 in ground states of ${}^3{\rm H}={\rm t}$ and ${}^4{\rm He}=\alpha$ and the 20.21 MeV excited state of ${}^4{\rm He}=\alpha^*$. Densities have rotational symmetry around the z axis.



Two-body density for S = 0, T = 1 pairs

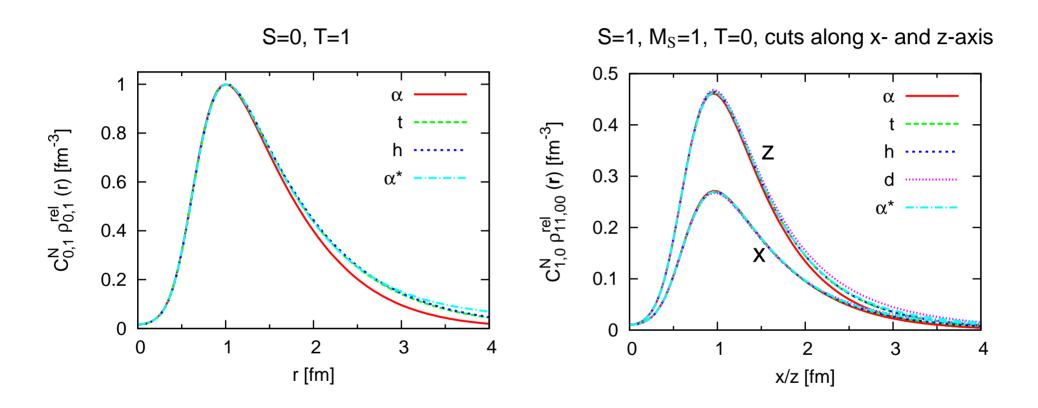


Two-body densities in coordinate space for a pair of nucleons with S=0 and T=1 in ground states of ${}^{3}\text{H}=\text{t}$ and ${}^{4}\text{He}=\alpha$ and the 20.21 MeV excited state of ${}^{4}\text{He}=\alpha^{*}$. Densities have rotational symmetry around the z axis.



Universality in coordinate space

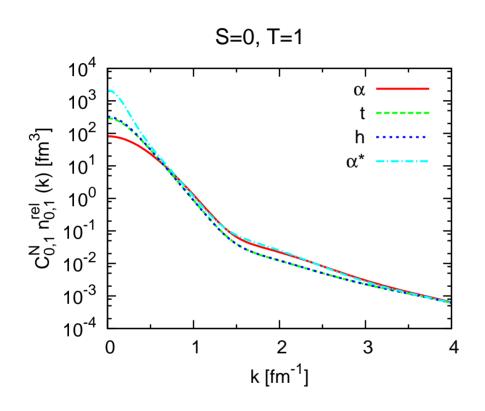
Two-body densities $\rho_{S,T}^{\rm rel}(r)$ normalized to 1 fm⁻³ at r=1 fm

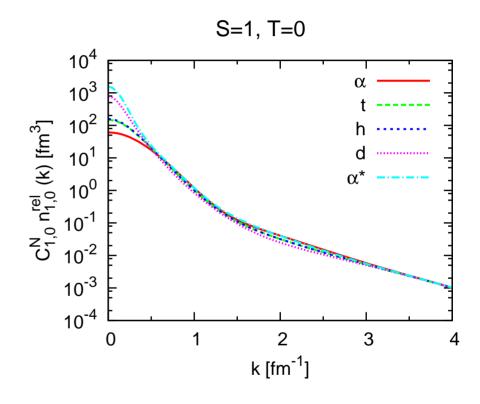


■ Universal behaviour of central and tensor correlations up to $r \approx 1$ fm for all many-body states

Universality in momentum space

Two-body densities $\rho_{S,T}^{\text{rel}}(r)$ normalized to 1 fm⁻³ at r=1 fm in coordinate space !





- 0 < k < 0.7 fm⁻¹ $0.7 \; fm^{-1} < k < 3 \; fm^{-1} \; universal \; for \; S=1, \; T=0$

large differences

less universal for S=0, T=1, 3-body correlations very short-range correlations, perfect universality

 $3 \text{ fm}^{-1} < k$

First EMMI Program - 13

Admixture of wrong parity

Number of pairs in ⁴ He ground states					
(ST)	(10)	(01)	(11)	(00)	
parity rel.motion	even	even	odd	odd	
exact AV8'	2.992	2.572	0.428	0.008	
shell model $(s_{1/2})^4$	3.000	3.000	0	0	

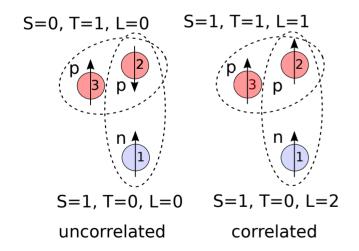
- Why does (ST)=(01) even channel give away 0.428 pairs to (ST)=(11) odd?
- Odd channel is less attractive V_{NN} does not scatter from even to odd Unitary 2-body correlator also keeps parity

Admixture of wrong parity by 3-body correlations

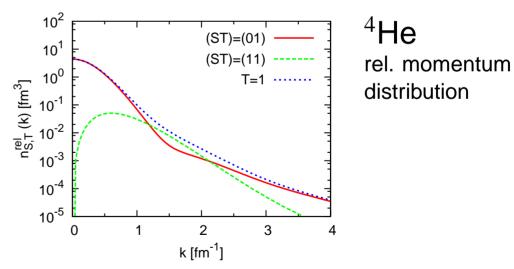
Number of pairs in ⁴ He ground states					
(ST)	(10)	(01)	(11)	(00)	
parity rel.motion	even	even	odd	odd	
exact AV8'	2.992	2.572	0.428	0.008	
shell model $(s_{1/2})^4$	3.000	3.000	0	0	

- Why does (ST)=(01) even channel give away 0.428 pairs to (ST)=(11) odd ?
- Odd channel is less attractive
 V_{NN} does not scatter from even to odd
 Unitary 2-body correlator also keeps parity

Explanation: 3-body correlations



Strong long-range tensor breaks S=0,T=1 pair (2,3) and aligns spins of S=1, T=0 pair (1,2) ⇒ more binding



(ST)=(01) and (ST)=(11) channels and sum (ST)=(11) from 3-body corr. contributes most where tensor-corr. are in (ST)=(10)

Unitary Correlation Operator Method

• UCOM imprints tensor and central correlations into SM-like many-body states $|\Phi\rangle$

$$|\Psi\rangle = \hat{C} |\Phi\rangle = \hat{C}_{\Omega} \hat{C}_r |\Phi\rangle, \quad \hat{C}^{\dagger} \hat{C} = 1$$

• Unitary trafo of \hat{H} to soft $\hat{H}_{\text{eff}} = \hat{C}^{\dagger} \hat{H} \hat{C}$

$$\langle \Psi' | \hat{H} | \Psi \rangle = \langle \Phi' | \hat{C}^{\dagger} \hat{H} | \hat{C} | \Phi \rangle = \langle \Phi' | \hat{H}_{eff} | \Phi \rangle$$

and unitary trafo of observables \hat{O}

$$\langle \Psi' | \hat{O} | \Psi \rangle = \langle \Phi' | \hat{C}^{\dagger} \hat{O} \hat{C} | \Phi \rangle = \langle \Phi' | \hat{O}_{\text{eff}} | \Phi \rangle$$

Hergert, Roth, Phys. Rev. C 75, 051001(R) (2007)

Bogner et. al., Phys. Rev. C 75, 061001(R) (2007)

Unitary Correlation Operator Method

• UCOM imprints tensor and central correlations into SM-like many-body states $|\Phi\rangle$

$$|\Psi\rangle = \hat{C} |\Phi\rangle = \hat{C}_{\Omega} \hat{C}_r |\Phi\rangle, \quad \hat{C}^{\dagger} \hat{C} = 1$$

• Unitary trafo of \hat{H} to soft $\hat{H}_{\mathrm{eff}} = \hat{C}^{\dagger} \hat{H} \; \hat{C}$

$$\langle \Psi' | \hat{H} | \Psi \rangle = \langle \Phi' | \hat{C}^{\dagger} \hat{H} | \hat{C} | \Phi \rangle = \langle \Phi' | \hat{H}_{eff} | \Phi \rangle$$

and unitary trafo of observables \hat{O}

$$\langle \Psi' \, | \, \hat{O} \, | \, \Psi \, \rangle = \langle \Phi' \, | \, \hat{C}^\dagger \hat{O} \, \hat{C} \, | \, \Phi \, \rangle = \langle \Phi' \, | \, \hat{O}_{\text{eff}} \, | \, \Phi \, \rangle$$

Similarity Renormalization Group

- SRG transformation of \hat{H} by flow equation $\frac{d}{d\alpha}\hat{H}(\alpha) = \left[\left[\hat{T}, \hat{H}(\alpha)\right], \hat{H}(\alpha)\right], \quad \hat{H}(0) = \hat{H}$
- Unitary trafo of Hamiltonian to soft $\hat{H}(\alpha)$

$$\hat{H}(\alpha) = \hat{U}^{\dagger}(\alpha)\hat{H}\hat{U}(\alpha), \quad \hat{U}^{\dagger}(\alpha)\hat{U}(\alpha) = 1$$

$$\langle \Psi' | \hat{H} | \Psi \rangle = \langle \Phi'(\alpha) | \hat{H}(\alpha) | \Phi(\alpha) \rangle$$

• $|\Phi(\alpha)\rangle$ looses short-range corr. with increasing flow α

$$|\Psi\rangle = \hat{U}(\alpha) |\Phi(\alpha)\rangle$$

Hergert, Roth, Phys. Rev. C **75**, 051001(R) (2007) Bogner *et. al.*, Phys. Rev. C **75**, 061001(R) (2007)

Unitary Correlation Operator Method

• UCOM imprints tensor and central correlations into SM-like many-body states $|\Phi\rangle$

$$|\Psi\rangle = \hat{C} |\Phi\rangle = \hat{C}_{\Omega}\hat{C}_r |\Phi\rangle, \quad \hat{C}^{\dagger}\hat{C} = 1$$

• Unitary trafo of \hat{H} to soft $\hat{H}_{\text{eff}} = \hat{C}^{\dagger} \hat{H} \hat{C}$

$$\langle \Psi' | \hat{H} | \Psi \rangle = \langle \Phi' | \hat{C}^{\dagger} \hat{H} | \hat{C} | \Phi \rangle = \langle \Phi' | \hat{H}_{eff} | \Phi \rangle$$

and unitary trafo of observables Ô

$$\langle \Psi' \, \big| \, \hat{O} \, \big| \Psi \rangle = \langle \Phi' \, \big| \, \hat{C}^\dagger \hat{O} \, \hat{C} \, \big| \Phi \rangle = \langle \Phi' \, \big| \, \hat{O}_{\text{eff}} \, \big| \Phi \rangle$$

Similarity Renormalization Group

- SRG transformation of \hat{H} by flow equation $\frac{d}{d\alpha}\hat{H}(\alpha) = \left[\left[\hat{T}, \hat{H}(\alpha)\right], \hat{H}(\alpha)\right], \quad \hat{H}(0) = \hat{H}$
- Unitary trafo of Hamiltonian to soft $\hat{H}(\alpha)$

$$\hat{H}(\alpha) = \hat{U}^{\dagger}(\alpha)\hat{H}\hat{U}(\alpha), \quad \hat{U}^{\dagger}(\alpha)\hat{U}(\alpha) = 1$$

$$\langle \Psi' | \hat{H} | \Psi \rangle = \langle \Phi'(\alpha) | \hat{H}(\alpha) | \Phi(\alpha) \rangle$$

• $|\Phi(\alpha)\rangle$ looses short-range corr. with increasing flow α

$$|\Psi\rangle = \hat{U}(\alpha) |\Phi(\alpha)\rangle$$

UCOM(SRG)

• Get UCOM correlation fcts. which define \hat{C}_{Ω} , \hat{C}_r by mapping S - and P-wave two-body scattering solutions for E=0: $|\Psi_{12}\rangle = C_{\Omega}C_r|\Phi_{12}(\alpha)\rangle$ gives mapping $\hat{U}(\alpha) \Rightarrow C_rC_{\Omega}$

Hergert, Roth, Phys. Rev. C 75, 051001(R) (2007) Bogner et. al., Phys. Rev. C 75, 061001(R) (2007)

Unitary Correlation Operator Method

• UCOM imprints tensor and central correlations into SM-like many-body states $|\Phi\rangle$

$$|\Psi\rangle = \hat{C} |\Phi\rangle = \hat{C}_{\Omega}\hat{C}_r |\Phi\rangle, \quad \hat{C}^{\dagger}\hat{C} = 1$$

• Unitary trafo of \hat{H} to soft $\hat{H}_{\text{eff}} = \hat{C}^{\dagger} \hat{H} \hat{C}$

$$\langle \Psi' | \hat{H} | \Psi \rangle = \langle \Phi' | \hat{C}^{\dagger} \hat{H} | \hat{C} | \Phi \rangle = \langle \Phi' | \hat{H}_{eff} | \Phi \rangle$$

and unitary trafo of observables Ô

$$\langle \Psi' | \hat{O} | \Psi \rangle = \langle \Phi' | \hat{C}^{\dagger} \hat{O} \hat{C} | \Phi \rangle = \langle \Phi' | \hat{O}_{\text{eff}} | \Phi \rangle$$

Similarity Renormalization Group

- SRG transformation of \hat{H} by flow equation $\frac{d}{d\alpha}\hat{H}(\alpha) = \left[\left[\hat{T}, \hat{H}(\alpha)\right], \hat{H}(\alpha)\right], \quad \hat{H}(0) = \hat{H}$
- Unitary trafo of Hamiltonian to soft $\hat{H}(\alpha)$

$$\hat{H}(\alpha) = \hat{U}^{\dagger}(\alpha)\hat{H}\hat{U}(\alpha), \quad \hat{U}^{\dagger}(\alpha)\hat{U}(\alpha) = 1$$

$$\langle \Psi' | \hat{H} | \Psi \rangle = \langle \Phi'(\alpha) | \hat{H}(\alpha) | \Phi(\alpha) \rangle$$

• $|\Phi(\alpha)\rangle$ looses short-range corr. with increasing flow α

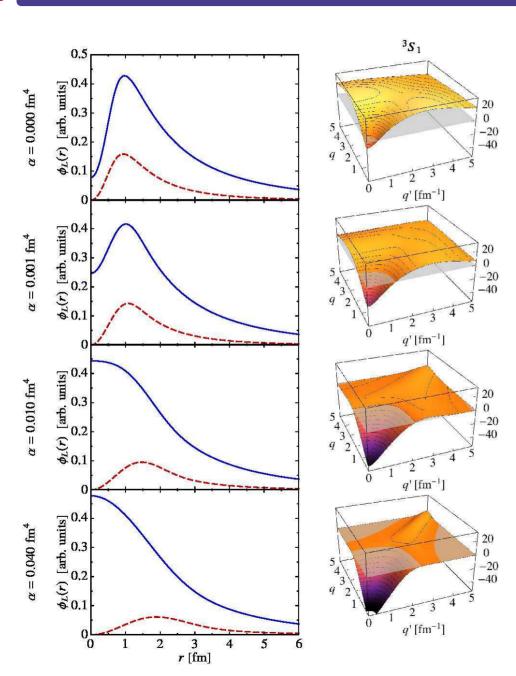
$$|\Psi\rangle = \hat{U}(\alpha) |\Phi(\alpha)\rangle$$

UCOM(SRG)

• Get UCOM correlation fcts. which define \hat{C}_{Ω} , \hat{C}_r by mapping S - and P-wave two-body scattering solutions for E=0: $|\Psi_{12}\rangle = C_{\Omega}C_r|\Phi_{12}(\alpha)\rangle$ gives mapping $\hat{U}(\alpha) \Rightarrow C_rC_{\Omega}$

Hergert, Roth, Phys. Rev. C **75**, 051001(R) (2007) Bogner *et. al.*, Phys. Rev. C **75**, 061001(R) (2007) Approximation: In the following all trafos only in 2-body space, neglecting induced n-body contributions

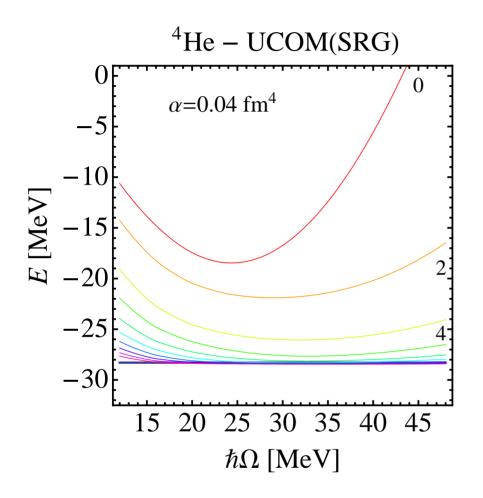
SRG and Deuteron wave functions

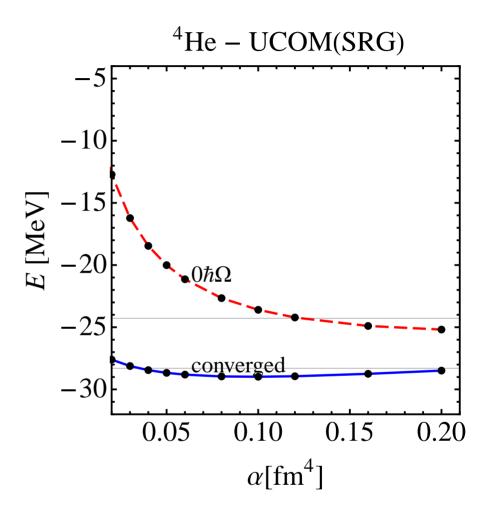


Increasing α or range of UCOM correlator \hat{C}

- SRG-evolved ²H wave function $|\Phi_{12}(\alpha)\rangle$ short-range correlation hole is eliminated D-wave admixture gets reduced
- SRG-evolved interaction $\hat{V}(\alpha)$ decouples low- and high momentum states becomes softer

No-Core Shell Model Calculations





- convergence much improved compared to bare interaction
- in 2-body approximation effective interaction gives different energy then bare interaction induced 3-, 4-body missing, but also genuine 3-body missing

Unitary Correlation Operator Method Two-body densities

momentum space coordinate space S = 1, T = 0 $S = 1, M_S = 1, T = 0$ 10² 0.04 UCOM04 UCOM04 10¹ UCOM20 UCOM20 ⁴He 10⁰ 0.03 CG uncorr. $\rho_{11,00}^{rel}\left(\pmb{r}\right) \left[fm^{-3}\right]$ $n_{1,0}^{\rm rel}$ (k) $[{\rm fm}^3]$ CG 10⁻¹ 10⁻² 0.02 10⁻⁴ 0.01 10⁻⁵ L=2 L=0 10⁻⁶ 0 3 2 0 3 k [fm⁻¹] x/z [fm]

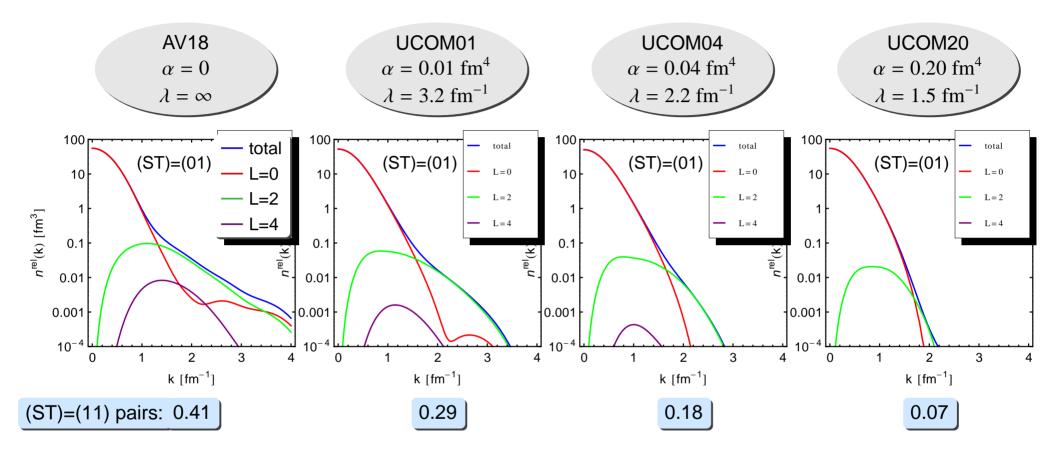
- two-body densities calculated from $0\hbar\Omega$ 4 He uncorrelated state and correlated density operators
- UCOM20 derived from $\alpha=0.04~{\rm fm^4}$ or $\lambda\approx2.2~{\rm fm^{-1}}$ SRG trafo reproduces coordinate space 2-body density and high-momentum components well
- tensor correlations dominate

 $\langle (s_{1/2})^4 | \hat{C}^{\dagger} \hat{\rho}_{11\ 00}^{\text{rel}}(\mathbf{r}) \hat{C} | (s_{1/2})^4 \rangle$

long-range many-body correlations should fill up around Fermi momentum

 $\langle (s_{1/2})^4 | \hat{C}^{\dagger} \hat{n}_{1 \ 0}^{\text{rel}}(k) \hat{C} | (s_{1/2})^4 \rangle$

(Uncorrelated) ⁴He Relative Momentum Distributions



- two-body momentum density $n_{1,0}^{\mathrm{rel}}(k) = \langle \Phi(\alpha) | \hat{n}_{10}^{\mathrm{rel}}(k) | \Phi(\alpha) \rangle$ (with uncorrelated operators) $|\Phi(\alpha)\rangle$ NCSM eigenstate of softened $\hat{H}(\alpha)$
- ullet with increasing lpha or range of correlator \hat{C} Hamiltonian gets softer and correlations are reduced
- correlations dominated by tensor, low-momentum components remain unchanged
- T. Neff, unpublished

Conclusions and Outlook

- Correlations induced by AV8' perfectly universal r < 1 fm and k > 3 fm⁻¹
- 2-body tensor induces 3-body correlations
- UCOM(SRG) demonstrates softening of potential and loss of short-range correlations
- Proposal:

 $0 < k \lesssim 1 \text{ fm}^{-1}$ long-range correlations

vibrations, deformation, mean-field ...

 $1 \lesssim k \lesssim 3 \text{ fm}^{-1}$ mid-range correlations

tensor, induced 3-body, ...

 $3 \text{ fm}^{-1} \leq k$ short-range

not accessible with nuclear d.o.f.

Outlook

- Abandon 2-body approximation, include 3-body everywhere
- Develop new SRG-generator in 3-body space such that contributions from induced 4- and higher body operators remain very small (→ R. Roth, A. Calci)

