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Motivation
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Deuteron dumbbell
Argonne Potential
short-range repulsion, tensor
no good for SM or HF
Argonne group, RevModPhys70(1998)743
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Outline
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✔ Motivation

• Two-body densities of exact many-body states 2H, 3H, 3He, 4He, 4He∗

as function of relative distance r and relative momentum k for different S,T channels

• At short distance two-body densities are one-to-one cast of potential (AV8’)

• Perfect universality up to r / 1 fm and k ' 3 fm−1

• Correlations induced by UCOM Ĉ = ĈΩĈr

• No-Core Shell Model results when softening the interaction

Results taken from: Feldmeier, Horiuchi, Neff, Suzuki, PRC 84(2011)054003
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Many-Body States
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➼ Given Hamiltonian Ĥ = T̂ + V̂NN

two-body interaction V̂NN= Argonne V8’

Solve many-body Schrödinger equation exactly
(correlated Gaussian basis):

Ĥ
∣

∣

∣Ψ; JM
〉

= E
∣

∣

∣Ψ; JM
〉

➼ exact many-body eigenstates
∣

∣

∣Ψ; JM
〉

which contain all many-body correlations
induced by VNN

(short-, middle- and long-ranged)

We investigate five many-body states
∣

∣

∣Ψ; JM
〉

α = 4He ground state
t = 3H
h = 3He
d = 2H
α∗= excited 0+ (20.25 MeV) state of 4He.
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Two-Body Densities
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➼ Exact many-body state
∣

∣

∣Ψ; JM
〉

contains all many-body correlations induced by V̂NN

Two-body density as function of distance r between nucleon pair with spin S ,MS and isospin T,MT :

➼ ρrel
S MS ,T MT

(r ) =
1

2J + 1

∑

M

〈

Ψ; JM
∣

∣

∣

A
∑

i< j

P̂S MS

i j P̂T MT
i j δ

3(r̂ i − r̂ j − r )
∣

∣

∣Ψ; JM
〉

➼ ρrel
S ,T (r) =

∑

MS ,MT

ρrel
S MS ,T MT

(r )

Two-body momentum density as function of relative momentum k between nucleon pair with spin
S ,MS and isospin T,MT :

nrel
S MS ,T MT

(k) =
1

2J + 1

∑

M

〈

Ψ; JM
∣

∣

∣

A
∑

i< j

P̂S MS

i j P̂T MT
i j δ

3( 1
2(k̂i − k̂ j) − k

)

∣

∣

∣Ψ; JM
〉

➼ nrel
S ,T (k) =

∑

MS ,MT

nrel
S MS ,T MT

(k)
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Argonne V8’ Potential
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Two-body density for S = 1,MS = 1,T = 0 pairs
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Densities have rotational symmetry around the z axis.
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Two-body density for S = 1,MS = 1,T = 1 pairs
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Densities have rotational symmetry around the z axis.
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Two-body density for S = 0,T = 1 pairs
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Two-body densities in coordinate space for a pair of nucleons with S = 0 and T = 1
in ground states of 3H = t and 4He = α and the 20.21 MeV excited state of 4He = α∗.
Densities have rotational symmetry around the z axis.
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Universality in coordinate space
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Two-body densities ρrel
S ,T (r) normalized to 1 fm−3 at r=1 fm
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➼ Universal behaviour of central and tensor correlations up to r ≈ 1 fm
for all many-body states
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Universality in momentum space
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Two-body densities ρrel
S ,T (r) normalized to 1 fm−3 at r=1 fm in coordinate space !
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➼ 0 < k < 0.7 fm−1 large differences
0.7 fm−1 < k < 3 fm−1 universal for S=1, T=0

less universal for S=0, T=1, 3-body correlations
3 fm−1 < k very short-range correlations, perfect universality
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Admixture of wrong parity
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Number of pairs in 4He ground states
(ST) (10) (01) (11) (00)

parity rel.motion even even odd odd

exact AV8′ 2.992 2.572 0.428 0.008

shell model (s1/2)4 3.000 3.000 0 0

• Why does (ST)=(01) even channel give
away 0.428 pairs to (ST)=(11) odd ?

• Odd channel is less attractive
VNN does not scatter from even to odd
Unitary 2-body correlator also keeps parity
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Admixture of wrong parity by 3-body correlations
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Number of pairs in 4He ground states
(ST) (10) (01) (11) (00)

parity rel.motion even even odd odd

exact AV8′ 2.992 2.572 0.428 0.008

shell model (s1/2)4 3.000 3.000 0 0

• Why does (ST)=(01) even channel give
away 0.428 pairs to (ST)=(11) odd ?

• Odd channel is less attractive
VNN does not scatter from even to odd
Unitary 2-body correlator also keeps parity

Explanation: 3-body correlations
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11

2 22

Strong long-range tensor breaks S=0,T=1 pair
(2,3) and aligns spins of S=1, T=0 pair (1,2)
⇒ more binding
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(ST)=(01) and (ST)=(11) channels and sum

(ST)=(11) from 3-body corr. contributes most
where tensor-corr. are in (ST)=(10)
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UCOM and SRG
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Unitary Correlation Operator Method

• UCOM imprints tensor and central correla-
tions into SM-like many-body states

∣

∣

∣Φ
〉

∣

∣

∣Ψ
〉

= Ĉ
∣

∣

∣Φ
〉

= ĈΩĈr

∣

∣

∣Φ
〉

, Ĉ†Ĉ = 1

• Unitary trafo of Ĥ to soft Ĥeff = Ĉ†Ĥ Ĉ
〈

Ψ
′
∣

∣

∣ Ĥ
∣

∣

∣Ψ
〉

=
〈

Φ
′
∣

∣

∣ Ĉ†Ĥ Ĉ
∣

∣

∣Φ
〉

=
〈

Φ
′
∣

∣

∣ Ĥeff

∣

∣

∣Φ
〉

and unitary trafo of observables Ô
〈

Ψ
′
∣

∣

∣ Ô
∣

∣

∣Ψ
〉

=
〈

Φ
′
∣

∣

∣ Ĉ†Ô Ĉ
∣

∣

∣Φ
〉

=
〈

Φ
′
∣

∣

∣ Ôeff

∣

∣

∣Φ
〉

Hergert, Roth, Phys. Rev. C 75, 051001(R) (2007)
Bogner et. al., Phys. Rev. C 75, 061001(R) (2007)

16



UCOM and SRG
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Unitary Correlation Operator Method

• UCOM imprints tensor and central correla-
tions into SM-like many-body states

∣

∣

∣Φ
〉

∣

∣

∣Ψ
〉

= Ĉ
∣

∣

∣Φ
〉

= ĈΩĈr

∣

∣

∣Φ
〉

, Ĉ†Ĉ = 1

• Unitary trafo of Ĥ to soft Ĥeff = Ĉ†Ĥ Ĉ
〈

Ψ
′
∣

∣

∣ Ĥ
∣

∣

∣Ψ
〉

=
〈

Φ
′
∣

∣

∣ Ĉ†Ĥ Ĉ
∣

∣

∣Φ
〉

=
〈

Φ
′
∣

∣

∣ Ĥeff

∣

∣

∣Φ
〉

and unitary trafo of observables Ô
〈

Ψ
′
∣

∣

∣ Ô
∣

∣

∣Ψ
〉

=
〈

Φ
′
∣

∣

∣ Ĉ†Ô Ĉ
∣

∣

∣Φ
〉

=
〈

Φ
′
∣

∣

∣ Ôeff

∣

∣

∣Φ
〉

Similarity Renormalization Group

• SRG transformation of Ĥ by flow equation
d

dα
Ĥ(α) =

[[

T̂ , Ĥ(α)
]

, Ĥ(α)
]

, Ĥ(0) = Ĥ

• Unitary trafo of Hamiltonian to soft Ĥ(α)

Ĥ(α) = Û†(α)ĤÛ(α), Û†(α)Û(α) = 1
〈

Ψ
′
∣

∣

∣ Ĥ
∣

∣

∣Ψ
〉

=
〈

Φ
′(α)
∣

∣

∣ Ĥ(α)
∣

∣

∣Φ(α)
〉

•
∣

∣

∣Φ(α)
〉

looses short-range corr. with in-
creasing flow α

∣

∣

∣Ψ
〉

= Û(α)
∣

∣

∣Φ(α)
〉

Hergert, Roth, Phys. Rev. C 75, 051001(R) (2007)
Bogner et. al., Phys. Rev. C 75, 061001(R) (2007)
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UCOM and SRG

First EMMI Program - 18

Unitary Correlation Operator Method

• UCOM imprints tensor and central correla-
tions into SM-like many-body states

∣

∣

∣Φ
〉

∣

∣

∣Ψ
〉

= Ĉ
∣

∣

∣Φ
〉

= ĈΩĈr

∣

∣

∣Φ
〉

, Ĉ†Ĉ = 1

• Unitary trafo of Ĥ to soft Ĥeff = Ĉ†Ĥ Ĉ
〈

Ψ
′
∣

∣

∣ Ĥ
∣

∣

∣Ψ
〉

=
〈

Φ
′
∣

∣

∣ Ĉ†Ĥ Ĉ
∣

∣

∣Φ
〉

=
〈

Φ
′
∣

∣

∣ Ĥeff

∣

∣

∣Φ
〉

and unitary trafo of observables Ô
〈

Ψ
′
∣

∣

∣ Ô
∣

∣

∣Ψ
〉

=
〈

Φ
′
∣

∣

∣ Ĉ†Ô Ĉ
∣

∣

∣Φ
〉

=
〈

Φ
′
∣

∣

∣ Ôeff

∣

∣

∣Φ
〉

Similarity Renormalization Group

• SRG transformation of Ĥ by flow equation
d

dα
Ĥ(α) =

[[

T̂ , Ĥ(α)
]

, Ĥ(α)
]

, Ĥ(0) = Ĥ

• Unitary trafo of Hamiltonian to soft Ĥ(α)

Ĥ(α) = Û†(α)ĤÛ(α), Û†(α)Û(α) = 1
〈

Ψ
′
∣

∣

∣ Ĥ
∣

∣

∣Ψ
〉

=
〈

Φ
′(α)
∣

∣

∣ Ĥ(α)
∣

∣

∣Φ(α)
〉

•
∣

∣

∣Φ(α)
〉

looses short-range corr. with in-
creasing flow α

∣

∣

∣Ψ
〉

= Û(α)
∣

∣

∣Φ(α)
〉

UCOM(SRG)
• Get UCOM correlation fcts. which define ĈΩ, Ĉr by mapping S - and P-wave two-body scattering

solutions for E=0:
∣

∣

∣Ψ12
〉

= C
∼ Ω

C
∼ r

∣

∣

∣Φ12(α)
〉

gives mapping Û(α)⇒ C
∼ rC∼ Ω

Hergert, Roth, Phys. Rev. C 75, 051001(R) (2007)
Bogner et. al., Phys. Rev. C 75, 061001(R) (2007)
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UCOM and SRG
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Unitary Correlation Operator Method

• UCOM imprints tensor and central correla-
tions into SM-like many-body states

∣

∣

∣Φ
〉

∣

∣

∣Ψ
〉

= Ĉ
∣

∣

∣Φ
〉

= ĈΩĈr

∣

∣

∣Φ
〉

, Ĉ†Ĉ = 1

• Unitary trafo of Ĥ to soft Ĥeff = Ĉ†Ĥ Ĉ
〈

Ψ
′
∣

∣

∣ Ĥ
∣

∣

∣Ψ
〉

=
〈

Φ
′
∣

∣

∣ Ĉ†Ĥ Ĉ
∣

∣

∣Φ
〉

=
〈

Φ
′
∣

∣

∣ Ĥeff

∣

∣

∣Φ
〉

and unitary trafo of observables Ô
〈

Ψ
′
∣

∣

∣ Ô
∣

∣

∣Ψ
〉

=
〈

Φ
′
∣

∣

∣ Ĉ†Ô Ĉ
∣

∣

∣Φ
〉

=
〈

Φ
′
∣

∣

∣ Ôeff

∣

∣

∣Φ
〉

Similarity Renormalization Group

• SRG transformation of Ĥ by flow equation
d

dα
Ĥ(α) =

[[

T̂ , Ĥ(α)
]

, Ĥ(α)
]

, Ĥ(0) = Ĥ

• Unitary trafo of Hamiltonian to soft Ĥ(α)

Ĥ(α) = Û†(α)ĤÛ(α), Û†(α)Û(α) = 1
〈

Ψ
′
∣

∣

∣ Ĥ
∣

∣

∣Ψ
〉

=
〈

Φ
′(α)
∣

∣

∣ Ĥ(α)
∣

∣

∣Φ(α)
〉

•
∣

∣

∣Φ(α)
〉

looses short-range corr. with in-
creasing flow α

∣

∣

∣Ψ
〉

= Û(α)
∣

∣

∣Φ(α)
〉

UCOM(SRG)
• Get UCOM correlation fcts. which define ĈΩ, Ĉr by mapping S - and P-wave two-body scattering

solutions for E=0:
∣

∣

∣Ψ12
〉

= C
∼ Ω

C
∼ r

∣

∣

∣Φ12(α)
〉

gives mapping Û(α)⇒ C
∼ rC∼ Ω

Hergert, Roth, Phys. Rev. C 75, 051001(R) (2007)
Bogner et. al., Phys. Rev. C 75, 061001(R) (2007)

Approximation: In the following all trafos
only in 2-body space, neglecting induced

n-body contributions
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SRG and Deuteron wave functions

First EMMI Program - 20

Increasing α or range of UCOM correlator Ĉ

• SRG-evolved 2H wave function
∣

∣

∣Φ12(α)
〉

short-range correlation hole is eliminated
D-wave admixture gets reduced

• SRG-evolved interaction V̂(α) decouples
low- and high momentum states
becomes softer
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No-Core Shell Model Calculations
UCOM(SRG)
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0~Ω

converged

• convergence much improved compared to bare interaction
• in 2-body approximation effective interaction gives different energy then bare interaction

induced 3-, 4-body missing, but also genuine 3-body missing
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Two-body densities
Unitary Correlation Operator Method
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coordinate space
S = 1,MS = 1, T = 0
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momentum space
S = 1, T = 0
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4He

• two-body densities calculated from 0~Ω 4He uncorrelated state and correlated density operators

• UCOM20 derived from α = 0.04 fm4 or λ ≈ 2.2 fm−1 SRG trafo reproduces
coordinate space 2-body density and high-momentum components well

• tensor correlations dominate

• long-range many-body correlations should fill up around Fermi momentum
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(Uncorrelated) 4He Relative Momentum Distributions
Unitary Correlation Operator Method
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— L=0

— L=2

— L=4

(ST)=(01) (ST)=(01) (ST)=(01) (ST)=(01)

(ST)=(11) pairs: 0.41 0.29 0.18 0.07

• two-body momentum density nrel
1,0(k) =

〈

Φ(α)
∣

∣

∣ n̂rel
10(k)

∣

∣

∣Φ(α)
〉

(with uncorrelated operators)
∣

∣

∣Φ(α)
〉

NCSM eigenstate of softened Ĥ(α)

• with increasing α or range of correlator Ĉ Hamiltonian gets softer and correlations are reduced

• correlations dominated by tensor, low-momentum components remain unchanged

T. Neff, unpublished
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Conclusions and Outlook
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• Correlations induced by AV8’ perfectly universal r < 1 fm and k > 3 fm−1

• 2-body tensor induces 3-body correlations

• UCOM(SRG) demonstrates softening of potential and loss of short-range correlations
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• Proposal:

0 < k / 1 fm−1 long-range correlations

vibrations, deformation, mean-field ...

1 / k / 3 fm−1 mid-range correlations

tensor, induced 3-body, ...

3 fm−1 / k short-range

not accessible with nuclear d.o.f.

Outlook
• Abandon 2-body approximation, include 3-body everywhere

• Develop new SRG-generator in 3-body space
such that contributions from induced 4- and higher body operators
remain very small (→ R. Roth, A. Calci)
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