

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

Introduction

Antiproton Scattering: Measure space like GPDs with PANDA as they are currently studied i.e. in hard exclusive electroproduction experiments @ JLAB

Physics content: spatial structure of the nucleon, pressure distributions, shear forces, ...

Experimental method: Lepton-pair production in hard exclusive hadronic collisions

$$p\bar{p} \rightarrow p\bar{p} l^+ l^-$$

→ Exclusive analogue of the Drell-Yan process

Theoretical Description

Lepton-pair production in hard exclusive hadron-hadron collisions

S.V. Goloskokov $^{\S1},$ P. Kroll \dagger2 and O. Teryaev §\ddagger3

§: Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Moscow region, Russia
†: Fachbereich Physik, Universität Wuppertal, D-42097 Wuppertal, Germany
‡: Veksler and Baldin Laboratory of High Energy Physics, Dubna 141980, Moscow region, Russia arXiv:2008.13594v1 [hep-ph] 31 Aug 2020

2

Double handbag for exclusive lepton-pair production in hadron-hadron collisions

Observables

The $p\bar{p} \rightarrow p\bar{p} l^+ l^-$ cross section in $pb/\text{ GeV}^6$ versus t_1 and t_2 $s = 30 \text{ GeV}^2, Q^2 = 3 \text{ GeV}^2$

Feasability Studies

→ PANDAroot simulations with a phase space event generator

2 final states have been studied:
$$p\overline{p} \rightarrow p\overline{p}\gamma^* \rightarrow \begin{cases} p\overline{p}e^+e^- \\ p\overline{p}\mu^+\mu^- \end{cases}$$

➔ It was found, that only the e⁺e⁻ final state is feasible since the high muon momenta are mostly outside the PID range of the PANDA muon system (see my talk at the May CM)

2 beam momenta have been studied:

→ Smaller beam momenta can not provide sufficiently high Q²

→ Feasibility for $s = 20 \text{ GeV}^2$ has been shown at the last CM

Generated Antiproton Distributions vs -t

→ Detection of the antiproton is not required

 \rightarrow Reconstruction via the missing antiproton mass

→ Results after Bremsstrahlungscorrection

Expected Background

- → Background studies for $s = 20 \text{ GeV}^2$ and $s = 30 \text{ GeV}^2$ have been performed.
- → > 1 B two pion background events ($t_{1,2} < 1.5 \text{ GeV}^2$) have been simulated.

Cross section estimates for the main background channel:

Physics Letters B 680 (2009) 459-465

Low-energy pion–pion scattering in the $pp\to pp\pi^+\pi^-$ and $p\bar{p}\to p\bar{p}\pi^+\pi^-$ reactions

```
P. Lebiedowicz<sup>a</sup>, A. Szczurek<sup>a,b,*</sup>, R. Kamiński<sup>a</sup>
```

Background Cross Section

Signal cross sections have been inetgrated over the second t_i and over the full Q² (assumed 1/Q² dep.)

→ Lowest background at 30 GeV²

PID Refinenements and Background Suppression

- → A suppression of the two pion background by $10^5 10^6$ is needed
- → PID refinements are needed to reach this!

Two PID versions have been investigated:

- a) Cuts on the PID variables and additional detector variables
- b) A TMVA analysis including the PID and detector variables

Classsical PID Refinenements

Protons: 2 configurations were investigated

tight: $P_C > 0.99$ && $P_S > 0.05$ loose: $P_C > 0.99$

<u>Electrons:</u> $P_{c} > 0.99$ && $P_{s} > 0.19$

i. Calorimeter sampling fraction E/p

E/p > 0.8 + momentum dependent 3 sigma band cut

ii. Energy los per path length dE/dx in the STT

momentum dependent 3 sigma band cut

- iii. **EMC E**₁ $E_1 > 0.35 \text{ GeV}$
- **iv. EMC lateral moment** EMC lateral < 0.75

Effect of the Classical PID Refinements

electron (- pion):

→ Cuts are applied sequentially

	signal eff. [%]		S / BG	signal eff. [%] S / BG			
	PID_C > 0.99	47,7	20	46,3	31		
	PID_S > 0.19	32,5	66	34,9	65		
	sampfrac E/p	28,6	219	25,4	198		
	STT dE/dx	21,4	460	16,6	456		
	EMC E1	17,6	707	14,5	811		
	EMC lateral	15,3	1293	13,2	1053		
positron (- pion):		s = 20 GeV²		s = 30 GeV²			
		signal eff.	S / BG	signal eff.	S / BG		
	PID_C > 0.99	50,3	18	52,9	8		
	PID_S > 0.19	36,3	43	37,8	34		
	sampfrac E/p	30,5	78	26,8	111		
	STT dE/dx	22,0	319	17,5	253		
	EMC E1	18,5	471	15,5	383		
	EMC lateral	15,8	883	13,9	548		

Electron / Positron PID (TMVA analysis)

S/B ratio for exclusive events @ s = 30 GeV²

- Select exclusive events with a cut on the missing antiproton mass
- Select the events of interest with a cut on Q^2 , t_1 and t_2
- → The expected S/B ratio is weighted with the expected cross section ratio $(2.3 \cdot 10^5)$

backgr. acc. expected S/B signal acc. expected S/B signal acc. backgr. acc. $Q^{2} > 1 GeV^{2}$ -t_{1.2} < 1 GeV² 0.0030 < 3.6*10-9 > 3.7 0.0047 4.0*10-9 ~ 5.2 $Q^{2} > 1 GeV^{2}$ -t₁₂ < 0.7 GeV² 0.0026 < 1.1*10-8 > 1.0 < 1.1*10-8 > 1.6 0.0042 $Q^{2} > 3 GeV^{2}$ -t_{1 2} < 1.0 GeV² 0.0045 < 1.0*10⁻⁸ > 2.0 < 1.0*10⁻⁸ 0.0060 > 2.6

classical	PID	refine	ments
-----------	-----	--------	-------

standard TMVA cuts

		signal acc.	backgr. acc.	expected S/B
Q ² > 1 GeV ²	-t < 1.0 GeV²	0,0078	7.9*10 ⁻⁹	~ 4.3
Q ² > 1 GeV ²	-t < 0.7 GeV	0,0071	< 1.1*10 ⁻⁸	> 2.8
Q ² > 3 GeV ²	-t < 1.0 GeV	0,0093	< 1.0*10 ⁻⁸	> 4.1

loose TMVA cuts

2-3 times larger wrong PID rate than classical cuts

➔ If ">" is stated, the given background acceptances and S/B ratios are only limits, no single event of the generated BG sample (1 B events) was reconstructed!

S/B ratio for exclusive events @ s = 30 GeV²

- → So far protons were selected with a cut on $PID_s > 0.05$ and $PID_c > 0.99$
- → Now only $PID_{C} > 0.99$ is used

classical PID refinements

2-3 times larger wrong PID rate than classical cuts

loose TMVA cuts

	signal acc.	backgr. acc.	expected S/B	signal acc.	backgr. acc.	expected S/B
Q² > 1 GeV² -t _{1,2} < 1 GeV²	0,0071	< 3.6*10 ⁻⁹	> 8.7	0,017	1.58*10 ⁻⁸	~ 4.8
Q² > 1 GeV² -t _{1,2} < 0.7 GeV²	0,0033	< 1.1*10 ⁻⁸	> 1.3	0,0092	< 1.1*10 ⁻⁸	> 3.6
Q ² > 3 GeV ² -t _{1,2} < 1.0 GeV ²	0,0096	< 1.0*10-8	> 4.2	0.021	< 1.0*10 ⁻⁸	> 9.1

			signal acc.	backgr. acc.	expected S/B
verv loose TMVA cuts	Q ² > 1 GeV ²	-t < 1.0 GeV²	0,026	6.7*10 ⁻⁸	~ 1.7
3.5 times larger wrong PID rate	Q ² > 1 GeV ²	-t < 0.7 GeV	0,014	2.5*10 ⁻⁸	~ 2.5
than classical cuts	Q ² > 3 GeV ²	-t < 1.0 GeV	0,031	3.3*10 ⁻⁸	~ 4.0

→ Releasing the proton cut increases the acceptance by a factor > 3

→ S/B ratio stays comparable / improves slightly

Q^2 acceptance @ s = 30 GeV²

t_1 (proton) acceptance @ s = 30 GeV²

t_2 (antiproton) acceptance @ s = 30 GeV²

Count rates and cross section uncertainties

- Differential cross section available for s = 20 GeV² and 30 GeV²
 Q² = 3 GeV²
 - \rightarrow Scaling is expected to follow 1/Q²
 - → Fix a Q² bin: 2.5 GeV² < Q² < 3.5 GeV²
 - Acceptance based on MC simulations
 - L = 2 fb⁻¹ \rightarrow 1/2 year at the design luminosity
 - L = 10 fb⁻¹ \rightarrow 2.5 years at the design luminosity

Rate estimate for s = 30 GeV²

 $L = 10 \text{ fb}^{-1}$

→ With 10 fb⁻¹ precise measurements will become possible

 Q^2 dependence at s = 30 GeV²

 $L = 2 \text{ fb}^{-1}$

→ The Q² dependence for s = 30 GeV² can be measured up to 7 GeV²
 → For s = 20 GeV² a measurement is only possible up to 4.5 GeV²

Summary and Outlook

- Center of mass energies squared between s = 20 GeV² and 30 GeV² provide suitable kinematics to measure the reaction with PANDA
- For e⁻ / e⁺ a good pion suppression can be achieved even with a relatively loose TMVA cut

→ Feasibility has been shown for $s = 20 \text{ GeV}^2$ and 30 GeV^2

- Further studies to fine tune the PID and event selection are in progress
- A release note for the e-e+ topology will be prepared

Bundesministerium für Bildung und Forschung

backup

Where is the step in t_{proton} coming from?

