

Strangeness Nuclear Physics with PANDA

Michael Papenbrock

Uppsala University

Super-FRS Coll. Meeting Walldorf 28. April 2023

Outline

- Motivation
- The PANDA detector
- Antihyperons in nuclei
- Neutron skin measurements
- Hyperatom spectroscopy
- Double-strange hypernuclei
- Summary

Hyperon Puzzle

- Neutron stars among the most enigmatic objects in the Universe
- Extreme conditions: Masses of to 2 solar masses, but radii as low as approx. 10 km
- Formation and fate determined by Equation of State (EoS)
- Gravity, strong force, and Pauli principle compete
 - Rapid increase of chemical potential at centre
 - Conversion of nucleons to hyperons energetically favourable
 - ➤ Relief of Fermi pressure softens EoS, reducing maximum mass to 1.4 solar masses
 - ➤ Contradiction → Hyperon Puzzle

Experimental approaches to hyperon few-body interaction

- Hypernuclei
 - 2+3-body forces
 - High-precision γ -ray spectroscopy
 - Spin-dependent forces
 - ➤ Significant contribution to solving hyperon puzzle
- Hyperon femtoscopy
 - Low-energy scattering parameters
 - NY and YY pairs
 - E.g. ALICE and HADES

Facility for Antiproton and Ion Research (FAIR)

High Energy Storage Ring (HESR)

- Anti-protons with $1.5 < p_{beam} < 15 \text{ GeV}/c$
- Internal targets
 - Cluster-jet and pellet $(\bar{p}p)$
 - Foils $(\bar{p}A)$
- Luminosity
 - Design $\sim 2 \cdot 10^{32} \text{cm}^{-2} \text{s}^{-1}$
 - Phase One $\sim 10^{31} \text{cm}^{-2} \text{s}^{-1}$
- Quasi-continuous beam

PANDA – full setup

Antihyperons in nuclei

- Baryon-antibaryon interaction can be studied by correlation functions (e.g. ALICE)
- PANDA: effective optical potential of $\overline{\Lambda}$ by exclusive $^{20}\mathrm{Ne}(\bar{p},\overline{\Lambda}\Lambda)$ reaction
- Abundant production of $\overline{Y}Y$ pairs near threshold
- Probe transport models for HI, e.g. combining relativistic mean field models with momentum dependent interactions

Antihyperons in nuclei

• Measure asymmetry of \overline{Y} and Y

$$\alpha_T = \frac{p_T(Y) - p_T(\overline{Y})}{p_T(Y) + p_T(\overline{Y})}, \alpha_L = \frac{p_L(Y) - p_L(\overline{Y})}{p_L(Y) + p_L(\overline{Y})}$$

- Momentum asymmetries relate to \overline{Y} interaction potential
- Possible within an hour of data taking
- PANDA unique

Probing neutron skin

- Many different approaches
 - Hadronic probes
 - Electromagnetic probes
 - Weak interaction
 - Astrophysical observations
- The interesting case of ⁴⁸Ca
 - Measure skin difference to ⁴⁰Ca
 - Ab-initio calculations possible

Probing neutron skin

- $\Lambda \overline{\Lambda}$ only in $\overline{p}p$, $\Sigma^{-}\overline{\Lambda}$ only in $\overline{p}n$

• Double ratio of probabilities
$$DR = \frac{p_{\Sigma^- \overline{\Lambda}}^{II}/p_{\Lambda \overline{\Lambda}}^{II}}{p_{\Sigma^- \overline{\Lambda}}^{I}/p_{\Lambda \overline{\Lambda}}^{I}} = \frac{1+p_{\rm abs}}{1-p_{\rm abs}}$$

- p_{abs} : antiproton absorption probability, related to integrated skin density
- Study evolution of neutron skin thickness for isotope chains, e.g. ^{129–136}Xe
- Adds to systematic uncertainties of hyperatom observables
- Preprint: arxiv:2209.03875

Hyperatoms and hypernuclei

 Ξ - production $\overline{p}N \rightarrow \Xi$ - $\overline{\Xi}$

rescattering in primary target nucleus

> deceleration in secondary target

> > capture of Ξ

atomic cascade of E-

 Ξ -p \rightarrow $\Lambda\Lambda$ conversion fragmentation \rightarrow excited $\Lambda\Lambda$ -nucleus

 γ -decay of $\Lambda\Lambda$ hypernuclei

weak pionic decay

Hyperatoms and hypernuclei

Support electronics 3 x HV/Preamp

- Repeatibility: $\pm 18 \mu m$ (14000 measurements, requirement: $300 \mu m$)
- Preprint: arxiv:2303.13359

Hyperatoms and hypernuclei

X-ray spectroscopy of Ξ^- hyperatoms

- Observe nuclear cascade
- Shift of low atomic level sensitive to ΞA potential near the nuclear surface
- PANDA unique

Sensitivity to nuclear structure

- Systematic uncertainties due to uncertainty of neutron skin thickness
- Best know nucleus: ²⁰⁸Pb

ΛΛ hypernuclei

- Active secondary target
 - Boron- μ Strip sandwich
- Form excited $\Lambda\Lambda$ hypernuclei by Ξ^- capture
- Measure $_{\Lambda\Lambda}X$ γ -transitions and momentum correlations
- Explore structure of light, double-strange hypernuclei
- Study few-body forces in baryonic matter

Nuclei	\mathbf{E}_{x}	J^{p}	production probability					
	(MeV)		${}^{9}\mathrm{Be}$	10B	i_1 B	$^{\rm nat}{f B}$	$^{12}\mathrm{C}$	
$\Lambda\Lambda^4H$	0.0	1+	0.00866	0.02410	0.00000	0.00472	0.0000	
$\Lambda\Lambda^{5}H$	0.0	1+ 1+ 2+ 0+	0.02120	0.02209	0.03199	0.03005	0.00633	
ΛΛ ⁵ He	0.0	1+	0.00000	0.00330	0.00000	0.00065	0.00000	
$\Lambda\Lambda$ He	0.0	$\tilde{0}^+$	0.02350	0.03175	0.00977	0.01408	0.03304	
$\Lambda\Lambda^{7}$ He	0.0	$\frac{3}{2}^{-}$	0.10201	0.03038	0.04407	0.04139	0.00649	
$^{8}_{\Lambda\Lambda}$ He	0.0		0.01880	0.00445	0.00490	0.00481	0.00000	
	1.80	2^{+}	0.08201	0.01846	0.02351	0.02252	0.00000	
$_{\Lambda\Lambda}^{9}\mathrm{He}$	0.0	3-	0.00426	0.00017	0.00292	0.00238	0.00000	
	2.92	3- 5- 3- 3- 1+	0.01859	0.00021	0.00435	0.00354	0.00000	
Λ ⁷ Li	0.0	3-	0.00016	0.00635	0.00000	0.00124	0.00000	
$^{8}_{\Lambda\Lambda}$ Li	0.0	Ĩ+	0.01055	0.01991	0.00233	0.00578	0.00209	
	1.36	3^{+}	0.01998	0.03976	0.00212	0.00950	0.00150	
	5.63	2^{+}	0.00617	0.01747	0.00000	0.00342	0.00000	
$\Lambda\Lambda$ Li	0.0	$\frac{3}{2}$	0.02199	0.03041	0.03948	0.03770	0.02574	
	0.73	$\frac{1}{2}$	0.01079	0.01452	0.01803	0.01734	0.01236	
	4.55	3- 	0.03997	0.04398	0.04528	0.04502	0.04207	
	5.96	<u>5</u> -	0.02870	0.02975	0.02907	0.02920	0.02864	
$^{10}_{\Lambda\Lambda}$ Li	0.0	$\tilde{2}^{+}$	0.00000	0.00702	0.03799	0.03192	0.00000	
	0.98	1+	0.00000	0.00404	0.02138	0.01798	0.00000	
	2.255	3^{+}	0.00000	0.00929	0.04422	0.03737	0.00000	
$^{9}_{\Lambda\Lambda}$ Be	0.0	$\frac{3}{2}$ - $\frac{1}{2}$ -	0.00000	0.00497	0.00003	0.00100	0.00000	
	0.71	$\frac{1}{2}^{-}$	0.000000	0.00227	0.00001	0.00045	0.00000	

Summary

- PANDA excellent tool for hypernuclear physics from the start
- Explore strong interaction in the nuclear periphery
- Observables relate to equation of state of neutron stars
- Key topics
 - Antihyperon potential in cold baryonic matter
 - Hyperatoms: Ξ^- potential in neutron-rich environments
 - Structure of $\Lambda\Lambda$ hypernuclei

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

Thank you for your attention!

PANDA – Phase One setup

Prospects

JPARC

- Kaon beam
- Extended target (cm)
- $\frac{\rho_n}{\rho_p}$ ~ 1

PANDA

- Stored antiproton beam
- Thin secondary target (mm)
- $\frac{\rho_n}{\rho_p} \sim 2$
- PANDA has unique explanatory potential

PANDA is a strangeness factory

- New simulation studies of single- and double-strange hyperons*
 - Exclusive measurements of

•
$$\bar{p}p \to \overline{\Lambda}\Lambda, \Lambda \to p\pi^-, \overline{\Lambda} \to \bar{p}\pi^+$$

•
$$\bar{p}p \to \bar{\Sigma}^0 \Lambda, \Lambda \to p\pi^-, \bar{\Sigma}^0 \to \bar{\Lambda}\gamma, \bar{\Lambda} \to \bar{p}\pi^+$$

•
$$\bar{p}p \to \bar{\Xi}^+ \Xi^-, \Xi^- \to \Lambda \pi^-, \Lambda \to p\pi^-, \bar{\Xi}^+ \to \bar{\Lambda}\pi^+, \bar{\Lambda} \to \bar{p}\pi^+$$

- Ideal pattern recognition and PID
- Background using Dual Parton Model

p _{beam} (GeV/c)	Reaction	$\sigma(\mu { m b})$	$oldsymbol{arepsilon}(\%)$	Rate (s^{-1}) @ $10^{31} \text{ cm}^{-2} s^{-1}$	S/B	Events / day
1.64	$\bar{p}p o \overline{\Lambda}\Lambda$	64.0	16.0	44	114	$3.8 \cdot 10^6$
1.77	$\bar{p}p o \bar{\Sigma}^0 \Lambda$	10.9	5.3	2.4	>11**	207000
6.0	$\bar{p}p o \bar{\Sigma}^0 \Lambda$	20	6.1	5.0	21	432000
4.6	$\bar{p}p \to \bar{\Xi}^+\Xi^-$	~ 1	8.2	0.3	274	26000
7.0	$\bar{p}p o \bar{\Xi}^+\Xi^-$	~ 0.3	7.9	0.1	65	86000

** 90% C.L.

Components in EoS

- Strong interaction in the confinement domain
- Three-body forces
 - Nucleon-nucleon-hyperon (NNY)
 - Nucleon-hyperon-hyperon (NYY)
 - ➤ Could be repulsive → counteract softening of EoS
- Two-body force
 - Nucleon-hyperon (NY)
 - Hyperon-hyperon (YY)
 - ➤ Repulsive core would stiffen EoS or make hyperon presence energetically unfavourable
- Data on hyperon interaction too scarce to constrain theoretical models

HADES / PANDA Phase 0

- Next beam time: p+p@4.5 GeV
- Opportunity for YN and YY interaction studies
- High sensitivity in low energy region

