

Paul Constantin (spokesperson), Timo Dickel (co-spokesperson), Soumya Bagchi , Dimiter Balabanski, Giovanna Benzoni, Giacomo De Angelis, Antonio Di Nitto, Jerzy Dudek, Zhuang Ge, Jürgen Gerl, Mohini Gupta, Emma Haettner, Muhsin Harakeh, Nicolas Hubbard, Ari Jokinen, Nasser Kalantar-Nayestanaki, Rituparna Kanungo, Anu Kankainen, Erika Kazantseva, Ronja Knoebel, Saskia Kraft-Bermuth, Teresa Kurtukian Nieto, Zhong Liu, Radomira Lozeva, Adam Maj, Israel Mardor, Daniele Mengoni, Ali Mollaebrahimi, Dragos Nichita, David O'Donnell, Wolfgang Plaß, Zsolt Podolyak, Rinku Prajapat, Christophe Rappold, Moritz Pascal Reiter, Adrian Rotaru, Takehiko Saito, Christoph Scheidenberger, Anamaria Spataru, Alexandru State, Yoshiki Tanaka, Livius Trache, Emanuele Vardaci, Heinrich Wilsenach, Yanlin Ye, Jiajun Yu, Jianwei Zhao for the Super-FRS Experiment Collaboration

47 participants, 31 institutions, 14 countries

- Long-term goal: establish MNT reactions with slowed-down radioactive beams at the Super-FRS to produce
 - and measure ground-state properties of heavy (A=190-260) neutron-rich isotopes
 - Supported by the supernumerary G-PAC report (February 2022)
- **S177 exploratory program**: in-cell MNT reactions with slowed-down ²³⁸U beam on targets inside CSC
 - proof-of-principle measurements: 30 cross sections ²³⁸U+⁶⁴Ni
 - 23 new masses and 60 new cross sections: $^{238}U+^{238}U$
 - 13 main shifts scheduled: 24 27 May 2024, 1 shift for FRS setup

Experimental plan and objectives

1) FRS-IC offline calibration: about 9 shifts split before and after the experiment

- high efficiency (purity) extraction and transport: ion sources
- efficiency calibration with ²⁵²Cf yields

2) FRS and FRS-IC beam optimization: 3 shifts

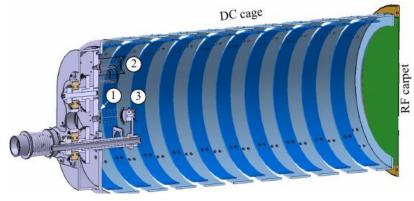
- SIS18 beam $10^7 s^{-1} 2^{38} U@500 MeV/u$ slowed down with degrader to 12 MeV/u on target
- FRS focusing on target inside CSC, beam intensity measurement (SEETRAM & INCREASE dump)
- extraction & transport of beam ²³⁸U, range scan in CSC

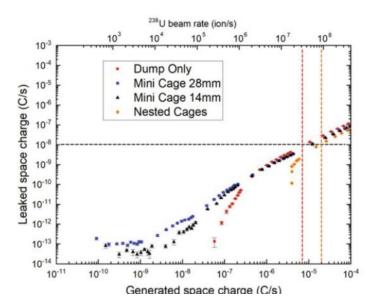
3) proof-of-principle: 3 shifts

- tuning of degrader, and CSC conditions with ²³⁸U+²⁰⁹Bi: α spectroscopy of ²¹¹Po,^{211m}Po in DU1 and MR-TOF
- method validation with ²³⁸U+⁶⁴Ni: compare 30 cross sections against data from Legnaro

4) *n*-rich actinides measurement with ²³⁸U target: 8 shifts

• measure ~20 new masses and ~60 cross sections; search for new isomers


5) Total: 22 shifts (14 with beam), ~20 new masses, ~90 cross sections



Setup readiness

In-Cell Reaction System (INCREASE): SOREQ, JLU Giessen, ELI-NP, Tel Aviv University, GSI Shortened DC cage:

- adapted to kinematics of released products
- minimum transport time ~ 7ms
- Remote controlled target wheel:
- up to 6 target positions, rotated by motor
- rotatable arm: beam dump, Si detector, attenuator
- electric cages for space charge containment

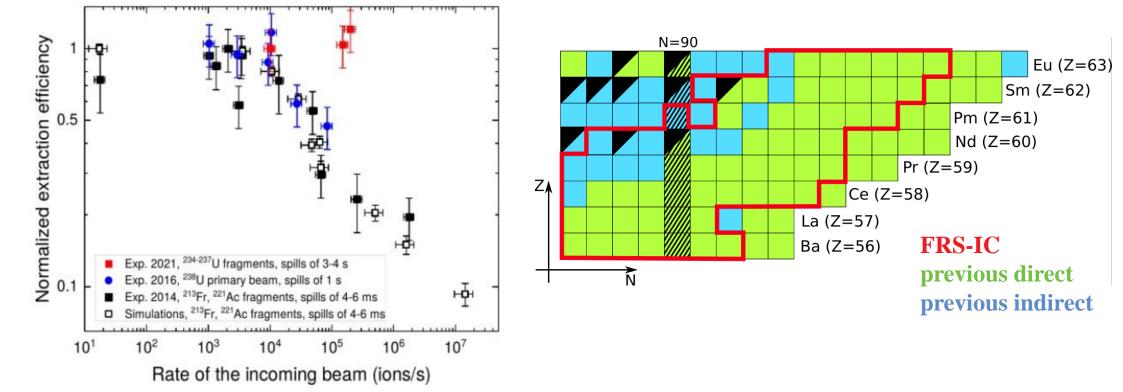
Rotaru A. et al., NIM B 512, 83 (2022)

Super-FRS EC Meeting April 27 – 28, 2023

Timo Dickel | JLU Gießen

Setup readiness

In beam experiment S530 fission isomers:

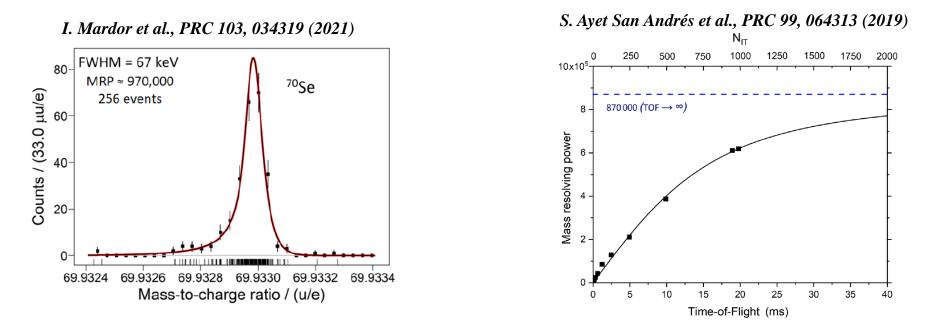

- T. Dickel et al. (2021)
- faster (shorter, higher DC): τ ~7ms
- high rate: >10⁵s⁻¹ (exp.), 10⁷-10⁸s⁻¹

(sim.)

- broadband and element independent

Offline experiment ²⁵²Cf s.f.:

- I. Mardor et al. (2020-2022)
- several experimental runs using ²⁵²Cf source
- first time simultaneous direct measurement of 69 masses
- data shown here: tof~9ms, m/ Δ m~320,000


Timo Dickel | JLU Gießen

Setup readiness

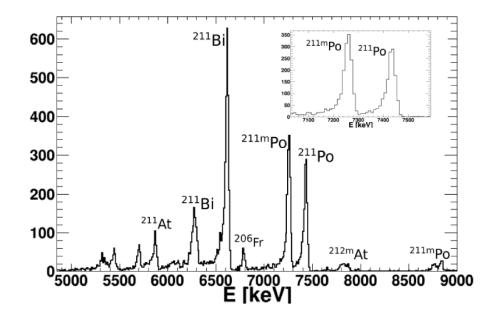
MR-ToF upgrades:

- $-m/\Delta m \sim 10^6$ obtained
- fast: half lives ~1ms
- non-scanning device: tens of FFs measured simultaneously

FRS-IC operation modes: fragmentation behind FRS + in-cell 252Cf s.f., MNT future at SuperFRS: combine both!

Timo Dickel | JLU Gießen

Beam optimization and CSC tuning


Beam optimization:

- beam slowing down from 500 MeV/u to 6 MeV/u (64 Ni) and 12 MeV/u (238 U/ 209 Bi)
- beam focusing on the target inside the CSC
- beam intensity measurement: SEETRAM (FRS) + INCREASE beam dump current
 - + extracted charge on channeltron detector in beamline
- procedures important for future reactions with FRS secondary beams

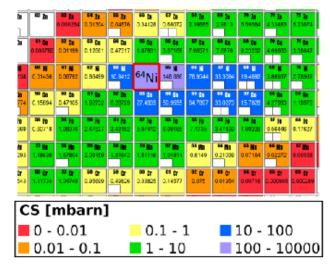
CSC tuning:

– extract beam ions to DU1 & MR-ToF
– short ²³⁸U+²⁰⁹Bi run: MNT test case (Jyväskylä)

α spectroscopy of ²¹¹Po,^{211m}Po 1n+1p transfer TLF α-decay of fragments on DU1 Si-detector

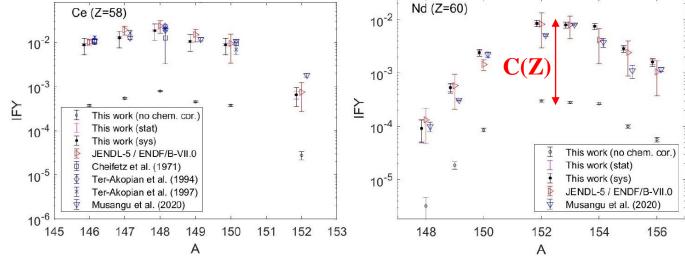
Proof-of-principle: ²³⁸U+⁶⁴Ni

Compare against cross sections for ⁶⁴Ni at 6 MeV/u on ²³⁸U at Legnaro


- full ²³⁸U+⁶⁴Ni simulations
- use ²⁵²Cf IFY method in MNT case:
 ²⁵²Cf IFY needed in same conditions!
- optimal FRS-IC cleanness: minimize C(Z)!

L. Corradi et al.

Phys. Rev. C 59, 261 (1999)


Magguramente

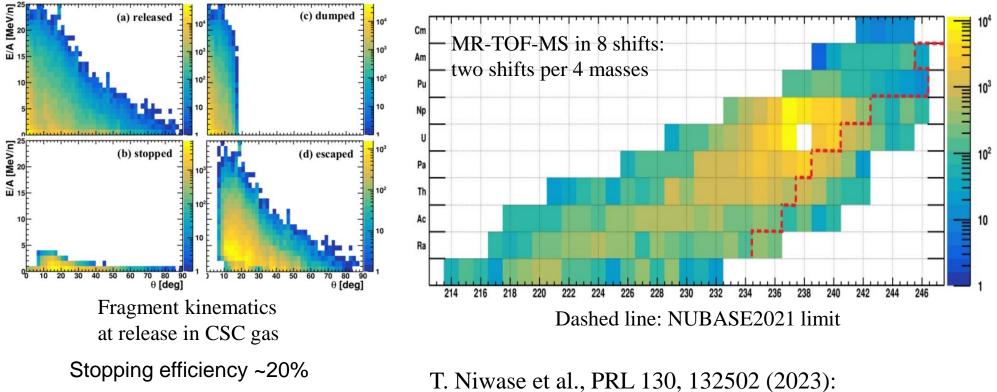
CS [mbarn] 0 - 0.01 0.1 - 1 10 - 100 0.01 - 0.1 1 - 10 100 - 10000 A. V. Karpov, V. V. Saiko Phys. Rev. C 96, 024618 (2017) Langevin-type model

$$\sum_{Z} IFY(N,Z)_{exp}^{N+Z=A} \cdot C(Z) = frac(FY_{lit}(A)) \cdot FY_{lit}(A)$$

I. Mardor et al., EPJ Web of Conferences 239 (2020) Y. Waschitz et al., EPJ Web of Conferences

Timo Dickel | JLU Gießen

Super-FRS EC


Neutron rich actinides: ²³⁸U+²³⁸U

Geant4 simulations with Langevin cross sections

– maximum rate of stopped fragments: optimal $^{238}\text{UO}_2$ target 40 μm

- for a 10^7 s⁻¹ beam, a MR-ToF measurement limit of 20 counts, and 4 mass numbers/measurement:

simulation predicts 23 new masses (Ra-Np) with A=235-246 in 8 shifts

T. N1wase et al., PRL 130, 132502 (2023): 241 U measured at KISS in 238 U at 10.75 MeV/n on 198 Pt

Timo Dickel | JLU Gießen

THANK YOU!

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

UPPSALA UNIVERSITET

and the Super-FRS Experiment Collaboration

rijksuniversiteit groningen

Jožef Stefan
 Institute

Timo Dickel | JLU Gießen