Cluster Beam Properties and Optimization Studies

Esperanza Köhler

Westfälische Wilhelms-Universität Münster, Institut für Kernphysik

FP7 FutureJet Meeting

November 3rd 2011

Concept and Objectives

 \implies Deeper insights into cluster formation process

Detailed and systematic studies on:

- Cluster velocity
- Target density
- Mass distribution

...in dependence of temperature and pressure settings.

 \implies Improvement of the cluster source to provide target densities as high as possible

Cluster velocity Overview of the high density cluster-jet target for $\overline{\mathsf{P}}\mathsf{ANDA}$

• Complete system installed in PANDA geometry (scattering chamber corresponds to PANDA interaction point)

Cluster velocity TOF Calibration

- \bullet Calibration source provides accelerated hydrogen ions (H+, H_2^+, H_3^+) and photons
 - \Longrightarrow TOF distribution of different ions (i.e. accelerated through a voltage of 100 $\rm V)$

Cluster velocity TOF Calibration

- \bullet Calibration source provides accelerated hydrogen ions (H+, H_2^+, H_3^+) and photons
 - \Longrightarrow TOF measurements of different ions and various acceleration voltages

Determination of:

- Time offset: $\sim \mu s$
- Flight path: 4.02(3) m
- Time resolution:

 $\approx 3\,\mu \mathrm{s}$ TOF in the range of 20 - 60 $\mu \mathrm{s}$ (ions)

 $\approx 20 \ \mu s$ TOF in the range of 0.2 - 10 ms (cluster)

Cluster velocity

Hydrogen vapor pressure curve and TOF cluster measurement

Cluster velocity

Hydrogen vapor pressure curve and TOF cluster measurement

$\begin{array}{l} Cluster \ velocity \\ \text{TOF cluster measurement at } 14 \, \mathrm{bar}, \ 50 \, \mathrm{K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \text{TOF cluster measurement at } 14 \, \mathrm{bar}, \, 49 \, \mathrm{K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 48 \, {\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 47 \, {\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 46 \, {\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 45 \, {\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 44 \, {\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 43 \, {\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 42 \, {\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 41 \, {\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 40 \, {\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 39 \, {\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at 14 bar, 38 K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 37 \, {\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 36 \, {\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 35 \, {\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 34 \, {\rm K} \end{array}$

$\begin{array}{c} Cluster \ velocity \\ \text{TOF cluster measurement at } 14 \, \mathrm{bar}, \ 33.9 \, \mathrm{K} \end{array}$

$\begin{array}{c} Cluster \ velocity \\ \text{TOF cluster measurement at } 14 \, \mathrm{bar}, \ 33.8 \, \mathrm{K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at $14 {\rm bar}, $33.7 {\rm K}$} \end{array}$

$\begin{array}{c} Cluster \ velocity \\ \text{TOF cluster measurement at } 14 \, \mathrm{bar}, \ 33.6 \, \mathrm{K} \end{array}$

$\begin{array}{c} Cluster \ velocity \\ \mbox{TOF cluster measurement at $14 {\rm bar}, $33.5 {\rm K}$} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at $14 {\rm bar}, $33.4 {\rm K}$} \end{array}$

$\begin{array}{c} Cluster \ velocity \\ \mbox{TOF cluster measurement at $14 {\rm bar}, $33.3 {\rm K}$} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14\,{\rm bar},\,33\,{\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 32 \, {\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14\,{\rm bar},\,31\,{\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \text{TOF cluster measurement at } 14 \, \mathrm{bar}, \ 30 \, \mathrm{K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 29 \, {\rm K} \end{array}$

$\begin{array}{c} Cluster \ velocity \\ \text{TOF cluster measurement at } 14 \, \mathrm{bar}, \, 28.9 \, \mathrm{K} \end{array}$

$\begin{array}{c} Cluster \ velocity \\ \text{TOF cluster measurement at } 14 \, \mathrm{bar}, \, 28.8 \, \mathrm{K} \end{array}$

$\begin{array}{c} Cluster \ velocity \\ \text{TOF cluster measurement at } 14 \, \mathrm{bar,} \ 28.7 \, \mathrm{K} \end{array}$

$\begin{array}{c} Cluster \ velocity \\ \text{TOF cluster measurement at } 14 \, \mathrm{bar}, \, 28.6 \, \mathrm{K} \end{array}$

$\begin{array}{l} \mbox{Cluster velocity} \\ \mbox{TOF cluster measurement at } 14\,{\rm bar},\,28\,{\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 27 \, {\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14\,{\rm bar},\,26\,{\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14 \, {\rm bar}, \, 25 \, {\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14\,{\rm bar},\,24\,{\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \mbox{TOF cluster measurement at } 14\,{\rm bar},\,23\,{\rm K} \end{array}$

$\begin{array}{l} \mbox{Cluster velocity} \\ \mbox{TOF cluster measurement at } 14\,{\rm bar},\,22\,{\rm K} \end{array}$

$\begin{array}{l} \mbox{Cluster velocity} \\ \mbox{TOF cluster measurement at } 14\,{\rm bar},\,21\,{\rm K} \end{array}$

$\begin{array}{l} Cluster \ velocity \\ \text{TOF cluster measurement at } 14 \, \mathrm{bar}, \, 20 \, \mathrm{K} \end{array}$

Cluster velocity TOF cluster measurement

• Observation of different TOF distributions

• Double peak shows up beyond main PANDA working point

• Evidence for two hydrogen phases and different cluster production processes

⇒ Research on cluster mass and size needed (FP7 HP3)

Cluster velocity TOF cluster measurement

• Observation of different TOF distributions

• Double peak shows up beyond main PANDA working point

• Evidence for two hydrogen phases and different cluster production processes

⇒ Research on cluster mass and size needed (FP7 HP3) 25 K isotherm

Cluster velocity

- Observed velocity: $\approx 200-1000\,\mathrm{m/s}$
- Strong discrepancy from perfect gas
- Good agreement with van der Waals gas (small variations)
- Freezeout position z of the cluster velocity at 0.5 and 1 mm from the narrowest point
 ⇒ important for nozzle production

Target density Beam profile

Target density Beam profile

- Solid line: fit assuming a homogeneous radial volume density (with sharp boundaries) $\rho_{square}(r) = \begin{cases} \rho_0 & \text{for } r \leq R \\ 0 & \text{for } r > R \end{cases}$
- Dashed line: Fermi-like density (with smooth boundaries)

$$\rho_{Fermi}(r) = \rho_0 \left(\exp\left(\frac{-R}{s}\right) + 1 \right) / \left(\exp\left(\frac{r-R}{s}\right) + 1 \right)$$

$$\rho_0: \text{ maximal volume density}$$

$$R: \text{ beam radius}$$

$$s: \text{ smearing factor}$$

Target density ...at 25 K

- Target density easy to vary over **one order of magnitude** (*T* constant, *p* variable)
- Increase of target density with increasing pressure up to 17 bar (with small variations)
- Decreasing target density above 17 bar

Target density ...at 17 bar, above critical point (33.18 K, 13 bar)

- Target density easy to vary over several orders of magnitude (*T* variable, *p* constant)
- Increase of target density with decreasing temperature up to 24 K ($8 \times 10^{14} \, \mathrm{atoms/cm^2}$) (with small variations)
- Drop because of different hydrogen phases at formation of clusters (supercritical fluid → fluid)
- Decreasing target density below 24 K

Target density Cluster source overview

Target density 50-40 K, 18.5 bar

Target density 39 K, 18.5 bar

Target density 38 K, 18.5 bar

Target density 37 K, 18.5 bar

Target density 36 K, 18.5 bar

Target density 35 K, 18.5 bar

Target density 34 K, 18.5 bar

Target density 33 K, 18.5 bar

Target density 32 K, 18.5 bar

Target density 31 K, 18.5 bar

Target density 30 K, 18.5 bar

Target density 29 K, 18.5 bar

Target density 28 K, 18.5 bar

Target density Cluster beam in skimmer chamber

- Inhomogeneous cluster beam in skimmer chamber
- Density still constant in scattering chamber (PANDA interaction point) → extracted beam is homogeneous
- Brighter area = higher density ?
- \implies Movable nozzle required

Target density Movable nozzle

point of rotation

Target density Spherical joint

Target density

Target density Movable nozzle

Target density Brighter area = higher density !

- Brighter area = higher density !
- Structures responsible for
 - variations
 - decreasing density

Target density First tests with tilting system

- Volume density: $1.9 \times 10^{15} \mathrm{atoms}/\mathrm{cm}^3$
 - \implies Systematic studies (FP7 HP3)

Mass distribution Overview of the MCT1 cluster-jet target

Mass distribution Opposing electrical field

Mass distribution ...measurements at 4 bar (MCT1)

Mass distribution 45 K, 4 bar (MCT1)

Mass distribution 27 K, 4 bar (MCT1)

Mass distribution 45 and 27 K at 4 bar (MCT1)

- Increase of cluster mass with decreasing temperature
- Measured clusters consist of up to 500 000 molecules (at 26.5 K, 4 bar)
- Indication of two different cluster masses at the same T/p settings (near vapor pressure curve)

 \implies Associated with measured TOF double peak ?

Future concept and objectives (FP7 HP3) Cluster velocity

• Extended velocity measurements with tilting system

- Systematic measurements:
 - Brighter area = higher density ! = lower velocity ?
 - Variations because of beam structure ?

Future concept and objectives (FP7 HP3) Target density

- Systematic measurements:
 - Search for the T/p settings with the highest density (in combination with tilting system)
 - Stability measurements
 - $\bullet\,$ Reproducibility of cluster beam \longrightarrow impacts on adjustment
 - Feasibility studies on density adjustments in real time
 - variation of pressure settings
 - modification of vacuum conditions in skimmer chamber
 - inception of plates/wires at cluster beam

Future concept and objectives (FP7 HP3) Mass distribution

- Extended mass measurements with tilting system (MCT2)
- Systematic measurements:
 - TOF double peak because of two different cluster masses ?
 - Brighter area = higher density = higher masses ?
 - Cluster production with liquid hydrogen ?

Future concept and objectives (FP7 HP3)

Mass distribution with new mass spectrometer

Future concept and objectives (FP7 HP3) Beam shape

LM-Micrograph of a collimator with round opening and slit

$\varnothing = 0.7 \,\mathrm{mm}$

$150 \times 860 \,\mu\mathrm{m}$

Future concept and objectives (FP7 HP3) Beam shape

Round shaped cluster beam vs. line formed cluster beam

• First measurements: cluster beam is easy to shape with an orifice

Future concept and objectives (FP7 HP3) Beam shape

• Density distribution: $\rho(x, y) = \rho_0$

$$\cdot \frac{\left(\operatorname{erf}\left(\frac{\frac{b_{x}}{2} - x}{s}\right) - \operatorname{erf}\left(\frac{-\frac{b_{x}}{2} - x}{s}\right) \right)}{2} \\ \cdot \frac{\left(\operatorname{erf}\left(\frac{\frac{b_{y}}{2} - y}{s}\right) - \operatorname{erf}\left(\frac{-b_{y}}{s} - y\right) \right)}{2}$$

 $\rho_0: \text{ maximal volume density } b_{x,y}: \text{ total width } s: \text{ smearing factor }$

Future concept and objectives (FP7 HP3) Beam shape

- Systematic measurements:
 - Influence on the vacuum conditions ?
 - Influence on target density ?
 - Search for the best size
 - 2-dim image with use of a micro channel plates

Thank you for your attention!

Bundesministerium für Bildung und Forschung

