Contract of the sense and simplicity GSI SiPM workshop October 7th, 2011

Integrated Arrays of Digital SiPM's: the next solid state revolution?

Dr. York Haemisch, Anja Schmitz york.haemisch@philips.com anja.schmitz@philips.com Philips Digital Photon Counting (PDPC) Philips Corporate Technologies

Philips Digital Photon Counting

Koninklijke Philips Electronics B.V.

Philips Digital Photon Counting

Philips Digital Photon Counting (PDPC)

outline

- Introduction to Philips Digital Photon Counting (PDPC)
- Introduction to Positron Emission Tomography (PET)
- Analog Silicon Photomultipliers (a-SiPM)
- PDPC's digital Silicon Photomultipliers (d-SiPM)
 - principle
 - performance
 - integration
- Outlook

Philips Digital Photon Counting

Solid State, Digitization and Integration Always Win

X-Ray imaging

PDPC: Short history

- 2004 Research project: "Novel technologies for future PET systems"
- 2005 *Dr.Thomas Frach* invented the digital SiPM
- 2006 Research project: "Integrated digital light sensor"; first test chip with promising results *(incubator)*
- 2006 Disentanglement of Philips Semiconductors now NXP
- 2007 Start of the PDPC *venture*
- 2008 Proof of concept
- 2009 **Technology launch** at IEEE NSS-MIC sensor V1.0
- 2010 **PDPC separate unit** of Philips Corporate Technologies
- 2011 Introduction of **PDPC-TEK** (Technology Evaluation Kit), sensor version 2.0 and **PET detector module**

YH

Philips Digital Photon Counting

Initial Motivation: A better detector for Positron-Emission-Tomography (PET) with Time-of-flight (TOF)

The optimal detector for Positron-Emission-Tomography (PET) provides **TOF** and **DOI** detection

Graphics courtesy of Spanoudaki & Levin, Stanford, in: Phys. Med. Biol. (56) 2011 High sensitivity \rightarrow long crystals High spatial resolution \rightarrow small cross section High aspect ratio \rightarrow needs DOI

Philips Digital Photon Counting

PET with TOF and DOI implemented with PMT's Non-DOI DOI

Uses 4-layer scintillator \rightarrow very expensive !

Nakazawa et.al., in: Nuclear Science Symposium Conference Record (NSS/MIC), 2010 IEEE

Fig. 13 Reconstructed images with-/without-DOI-TOF (a) nonDOI-nonTOF, (b) DOI-nonTOF, (c) nonDOI-TOF, (d) DOI-TOF

Philips Digital Photon Counting

Scintillation light detectors

Туре	РМТ	APD	anal. SiPM	dSiPM
MR compliance	No	Yes	Yes	Yes
ToF compliance	limited	No	Yes	Yes
Operational stability	medium	low	low	high
Amplification	High (10 ⁶)	Low (10 ²⁻³)	High (10 ⁶)	meaningless
Compactness	bulky	compact	very compact	very compact
Power/Readout	HV, ASIC, analog	HV, ASIC, analog	LV, ASIC, analog	LV, simple, digital

Philips Digital Photon Counting

PHILIPS

(Not only) for scintillators a fast reacting light detector is desired

Graphs courtesy of Spanoudaki & Levin, Stanford, in Sensors, 10, 2010

Philips Digital Photon Counting

From single APD to (multiple) SPAD's:

Single Geiger-mode APD

- fully analog
- poor timing
- high bias voltage, but
 below breakdown

Geiger-mode APD Array (SPAD's): "Silicon Photomultiplier"

- single photon resolution
- binary, but still analog
- better timing
- low bias voltage, above breakdown

B. Dolgoshein, V. Saveliev, V. Golovine First idea: Russia, early 80's

Signal formation in (analog) SiPM's

Figure 10. Left: schematic of the equivalent electrical circuit of a SiPM. Only 6 micro-cells, each represented by a diode symbol, are shown. Right: illustration of the signal formation in a SiPM. The pile-up of the individual micro-cell pulses is achieved by means of summing via a common readout line.

Graphics courtesy of Spanoudaki & Levin, Stanford in: Sensors, 10, 2010

SiPM-SPADs: sensitivity vs. dynamic range vs. DC

Figure 13. Microscope captures of sensitive areas of SiPMs with micro-cell size of 25 μ m (left), 50 μ m (middle) and 100 μ m (right). The fill factor increases with increasing micro-cell size, while the dynamic range (number of available micro-cells within a given area) decreases.

Photographs courtesy of Spanoudaki & Levin, Stanford Sensors, 10, 2010

Philips Digital Photon Counting

Scintillator & SPAD Coincidence Setup

Coincidence Time Resolution Hamamatsu MPPC S10362-11-050C, 400 cells

2 MPPCs coupled to 1 x 1 x 20 mm³ LYSO
 Measured with ¹⁸F

Katja Zechmeister, "Evaluierung neuer Detektoren für die kombinierte PET/MR-Bildgebung, basierend auf SiPM und schnellen Szintillationskristallen", Diplomarbeit, Klinikum rechts der Isar, 2010 16

Measurements: time resolution (I)

Measurements: energy resolution and linearity

Bias Voltage Dependency

Pulse Height

- Illumination with blue pulsed LED
- Temperature was kept constant at 25 C in both series of measurements
- Bias voltage coefficient:
 - 400 cells: 63 ± 2 %/V @ 69.83 V

Sebastian Fürst, "Development and Evaluation of Novel Detectors for Combined PET/MR Imaging,Based on SiPMs and Fast Scintillation

©Philips Digital Photon Counting, September 201 Crystals", Diplomarbeit, Klinikum rechts der Isar, 2999

Temperature Dependency

YH comments:

- correction requires sophisticated ASIC
- correction is time critical

Pulse Height

• adjusting bias changes PDE \rightarrow non-linearity

- Temperature coefficients, illuminated with blue pulsed LED
 - 400 cells

```
• 0.0 \pm 0.2 %/K and -2.7 \pm 0.2 %/K @ 25 ° C
```

- 1600 cells
 - 0.2 \pm 0,6 %/K and -2.5 \pm 0.4 %/K @ 25 $^{\circ}$ C

Sebastian Fürst, "Development and Evaluation of Novel Detectors for Combined PET/MR Imaging, Based on SiPMs and Fast Scintillation Crystals", Diplomarbait, Klinikum rechts der Isar, 2009

Philips Digital Photon Counting

Analog PS-PMT

Analog SiPM's: Only a few prototype devices exist

Analog SiPM

SiPM PET

©Philips Digital Photon Counting, September 2011

PHILIPS SiPM (SPAD) principles analog digital Ext. Voltage BD Individual V ph-e pulses **Breakdown** Meta-stable Quen-Current SiPM pulses ching ΓRG Time

"Therefore, while the APD is a linear amplifier for the input optical signal with limited gain, the SPAD is a trigger device so the gain concept is meaningless." (source: Wikipedia)

Philips Digital Photon Counting

Digital Photon Counting: Concept

"Therefore, while the APD is a linear amplifier for the input optical signal with limited gain, the SPAD is a trigger device so the gain concept is meaningless." (source: Wikipedia)

Philips Digital Photon Counting

Digital Photon Counting: Realization

Summing all cell outputs leads to an analog output signal and limited performance

digital SiPM (dSiPM)

Integrated readout electronics is the key element to superior detector performance

Analog vs. Digital SiPM: Layout

Digital Silicon Photomultiplier Detector

Philips Digital Photon Counting Digital SiPM: Architecture and Pixel Diagram

Philips Digital Photon Counting

PDPC dSiPM: Small Crystal Readout

LYSO array, 30 x 30 crystals, 1 mm x 1 mm pitch, 10 mm length

Data analysis by P. Düppenbecker, Philips Research

Digital SiPM: Typical Acquisition Sequence (example)

- 200MHz (5ns) system clock
- Variable light collection time up to 20µs
- 20ns min. dark count recovery
- dark counts => sensor dead-time
- data output parallel to the acquisition of the next event (no dead time)
- Trigger at 1, ≥2, ≥3 and ≥4 photons
- Validate at ≥4 ... ≥64 photons (possible

to bypass event validation completely)

PDPC dSiPM: Intrinsic Timing Resolution

Philips Digital Photon Counting

Philips Digita PDPC dSiPM: Coincidence Timing & Energy Resolution

- Scintillator: 3x3x5 mm³ LYSO in coincidence, ²²Na source
- Time resolution in coincidence: **153 ps** FWHM*
- Energy resolution (excluding escape peak): 10.7 %
- Excess voltage: 3.3 V, 98.5% active cells
- Measured at room temperature (31°C board temperature, not stabilized)

* Achieved with single die, typical tile levels: 250-350 ps

PDPC dSiPM: Spectral Sensitivity

- Peak PDE ~30% at 430 nm and 3.3 V excess voltage
- Conservative diode design (54 % fill-factor)
- No anti reflection coating used

Philips Digital Photon Counting

PDPC dSiPM: Linearity only Affected by Saturation \rightarrow Correction Possible

$$p = -N \cdot \ln\left(1 - \frac{k}{N}\right)$$

- N: active cells (6400) k: triggered cells
- p: # of photons

- Experiments taken at room temperature
- No temperature stabilization

PDPC dSiPM: Dark Count Mapping/Tuning

- Dark counts per second at 20°C and 3.3V excess voltage
- ~ 95% good diodes (dark count rate close to average)
- Typical dark count rate at 20°C and 3.3V excess voltage: ~150Hz / diode
- Dark count rate drops to ~1-2Hz per diode at -40°C
- Cells with high DC can be switched off individually \rightarrow DC control

Philips Digital Photon Counting

PDPC dSiPM: Reduced Thermal Sensitivity

- 24 ps full-width at half-maximum timing resolution of ps-laser
- Photopeak changes 0.33% per degree C due to changing PDE (values of analog SiPM's are ranging from 2-8%)
- Time changes **15.3 ps** per degree C (TDC + trigger network drift)
- PDE drift can be easily compensated by adapting the bias voltage
- TDC offset can be periodically re-calibrated using the SYNC input

Philips Digital Photon Counting

PDPC dSiPM: slow scan imaging mode

Coincidences

- Spatial sampling of the light distribution
- Similar to dark count map measurement
- Dark count map can be used for correction
- Alternatively, use coincidence to reduce noise
- Potentially useful for light guide design

PDPC dSiPM: 2nd version with fewer/larger SPADs

DLS 6400-22 (1st version):

- 6400 cells per pixel
- 54% fill factor
- ~ 30% PDE @ 430 nm

DLS 3200-22 (2nd version):

- 3200 cells per pixel
- 78% area efficiency
- anticipated PDE: >> 30% @ 430 nm
- Based on (and compatible to) DLS 6400-22 (same die size, bond pads, interface)

Philips Digital Photon Counting

DLS3200-22: Superior Energy Resolution

- 99% active cells
- 4 x 4 x 20 mm³ I YSO
- Non-linearity correction
- Optical crosstalk included [Burr et al.]
- ∧E/E = 9.2%

Energy Spectrum

1000

n 480

500

520

540

560

580

600

620

Energy [keV]

640

PDPC dSiPM: Sensor Array (tile V2.1, 8x8 pixel)

advanced integration

(1.2V, 1.8V, 2.5V, Power 3.3V, 30V) 200 MHz ref. clock SPI interface

FPGA/Flash:

- tile firmware
- data collection/concentration
- Skew correction
- Saturation correction
- configuration
- temperature measurement
- dark count maps

PDPC: Integrated sensors/detectors workflow

- Sensor design (PDPC)
- Silicon processing (180 nm fab, 38 masks, > 500 steps)
- Die testing (PDPC)
- Tile manufacturing (packaging experts)
- Tile testing (PDPC)
- Scintillator attachment (packaging esperts)
- Module assembly (packaging experts)
- Final module testing (PDPC), overall system design

Philips Digital Photon Counting

Philips Digital Photon Counting

PDPC dSiPM: POC (PET) Detector Module & Ring advanced integration

- modular design incl. 2 x 2 tiles
- integrated cooling
- module PCB for data concentration, processing & corrections
- list mode or raw data output (see also poster no. 68)
- prototype PET ring with 10 modules under construction

Philips Digital Photon Counting

Comparison of light detectors – which one is going to win?

				PDPC
	PMT	APD	SiPM	dSiPM
Gain	10^{6}	50-1,000	$\sim \! 10^6$	meaningless
rise time (ns)	~ 1	~ 5	~ 1	first photon
QE @ 420 nm (%)	~25	~ 70	~25–75 (PDE)	25-60
Bias (V)	>1,000	300-1,000	30-80	< 35
Temperature sensitivity $\left(\frac{\%}{^{o}C}\right)$	<1	~ 3	1–8	0.33
Magnetic field sensitivity	yes	no	no	No
Sensitive area	cm^2	mm^2	mm ²	mm²-m²
Price/channel (\$)	>200	~ 100	~ 50	Currently: ~25

Table courtesy of Spanoudaki & Levin, Stanford in: Sensors, 10, 2010

Philips Digital Photon Counting

A way to explore the technology...

PDPC-TEK (Technology Evaluation Kit) Launched Q2/11-available now!

And perhaps this might happen... Video showing glass PMT burning into flames and PDPC sensor evolving

Thank you for your attention!

york.haemisch@philips.com

www.philips.com/digitalphotoncounting