

G (S)

Seventh Framework Programme I3 – HadronPhysics3

JRA

Matrix Geiger-Mode Avalanche Micro-Pixel Photo Diodes for Frontier Detector Systems

"Silicon Multiplier"

Spokesperson: Herbert Orth, GSI Darmstadt, Germany

Objectives

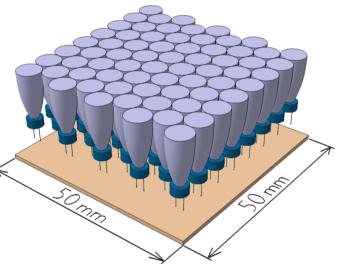
Exploiting and further developing the properties of SiPM Development of integrated electronics: preamplifier, ASIC Larger scale integration of sensors: Arrays, Matrices

The R&D projects:

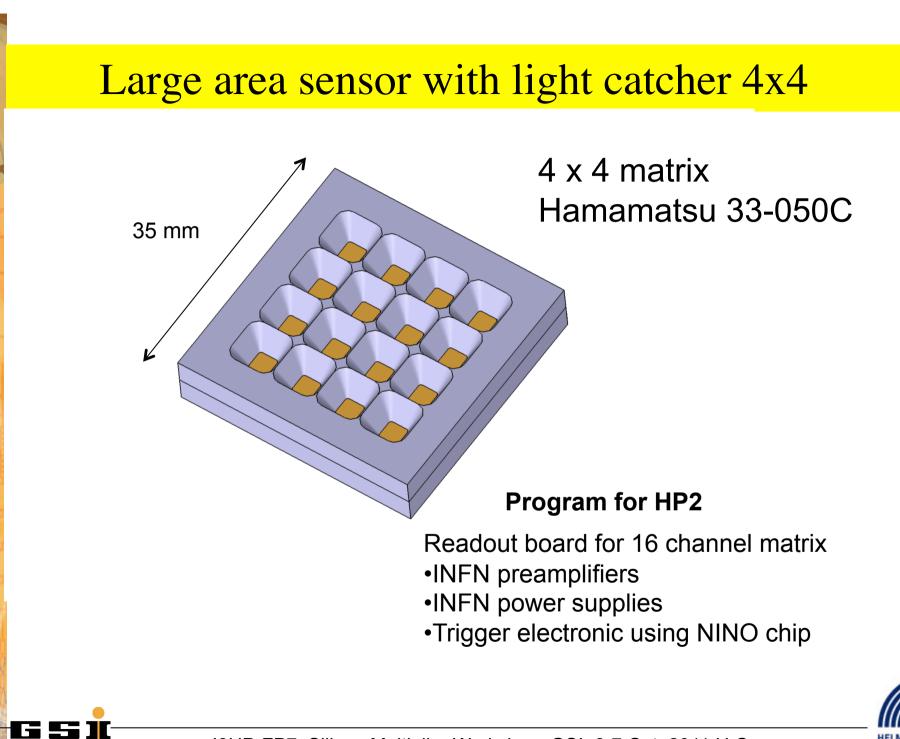
- SiPM-based position sensitive large area photon detectors
- SiPM-coupled fiber detectors
- Ultra-fast timing with plastic scintillators using SiPMs

G 53 1

Participants to WP28

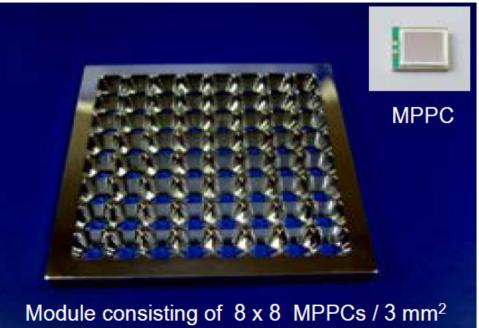

Beneficiary number	Organization legal name (in italics the Research Units)	Short name	Activity leaders (in bold the spokesperson)	Human effort ¹ (see note below) (person-months)
9	Gesellschaft für Schwerionenforschung mbH	GSI	H.Orth	12(24)
1	Istituto Nazionale di Fisica Nucleare	INFN		24(48)
	INFN Laboratori Nazionali di Frascati	INFN-LNF	C.Curceanu	12(30)
	INFN Sezione di Pisa	INFN-PI	A.Del Guerra	12(18)
2	Oesterreichische Akademie der Wissenschaften	OeAW	J.Marton	(12)
4	Charles University in Prague	CUNI	R.Leitner	12(18)
18	Justus Liebig Universität Giessen	PIG-JLU	R.Novotny	(6)
35	Foundation Bruno Kessler	FBK		(3)
	FBK-irst	FBK	C. Piemonte	(3)
41	Jagiellonian University	UJ	J.Smyrski	(12)
45	Institutul National de Cercetare-Dezvoltare pentru Fizica si Inginerie Nucleara – Horia Hulubei	IFIN-HH	M.Bragadireanu	24(60)
51	University of Glasgow	UGlasgow	B.Seitz	(12)
	Other involved institutions not receiving EC	funds	Activity leaders	Estimated human effort involved in the WP
nstitute of Nuclear	Physics, Moscow (Russia)		F.Guber	(12)
oint Institute for N	uclear Research, Dubna (Russia)		A.Olchevski	(24)
etersburg Nuclear	Physics Institute, Gatchina (Russia)		S.Belostotski	(18)
Lecotek Photonics,	Zuerich (Switzerland)		Z. Sadygov	(12)
nstitute for Scintill	ation Materials, Kharkov (Russia)		B.Gryniov	(3)
Bhabha Atomic Res	search Center, Mumbai (India)		S.Kailas	(12)
nst. of Solid State	Physics, RAS, Chernogolovka, Russia		V. Kurlov	(3)
aboratory for High	n Energy Physics, Bern, Switzerland		I.Kreslo	(6)

T1: SiPM-based position sensitive large area photon detector


Important parameters of SiMP for very low light level detection:

- •Large PDE and large area coverage
- •small pixel granularity and large pixel size
- •Fast single photon response for time resolution
- •Working in high magnetic field
- •No aging due to accumulated anode currents

R&D: Large SiPM sensor matrix for coincident photons (e.g. Cherenkov radiation)

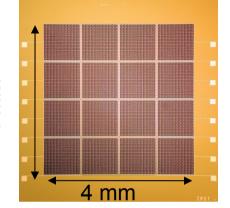


WP28 Silicon Multiplier

Large area sensor with light catcher 8x8

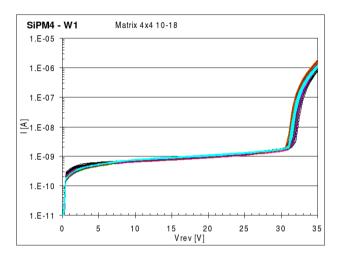
Development of the light-catcher matrix High photon detection efficiency Good timing at single and few photon level Cooling Study with naked sensors (without resin coverage) Electronics integration Majority filter implemented

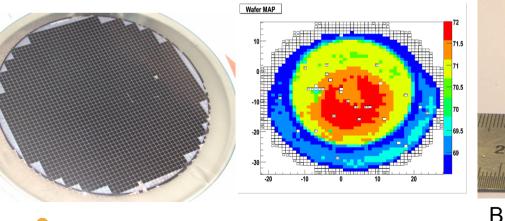
First design for present version of 3x3 mm MPPCs

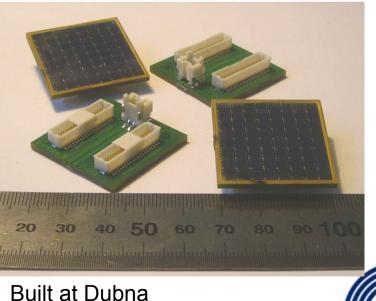


Large area open 8x8 sensor matrix

4 mm


WP28 Silicon Multiplier


FBK-irst


Matrices 16 elements (4x4) Matrices 64 elements(8 x 8) soon available

MATRICES VERY UNIFORM BREAKDOWN POINT

Zecotek MAPD

HELMHOLTZ

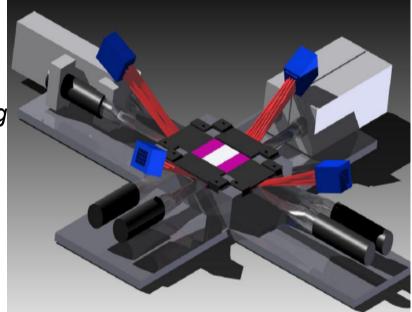
Workplan fo Task 1

TASKS/Subtasks		20	12			20	13			20	14	
TASIKS/SUUlasks	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1. Cherenkov light detection with Single photon	read	out										
1.1 Construction of different 64 channel light catchers												
1.2 Selection of the SiPM sensor with dedicated preamplifier					1							
1.3 Read-out electronics with implementation of majority filter							2					
1.4 Tests with pulsed laser source								3				
1.5 Tests with Cherenkov radiator												4
1.6 Study of 64 pixel sensor matrix from Zecotek												5

Milestones

GSI

- 1 SiPM and preamplifier selected
- 2 DAQ with coincident Photon trigger implemented
- 3 Report of laser test
- 4 Report of beam tests
- 5 64 pixel sensor matrix tested



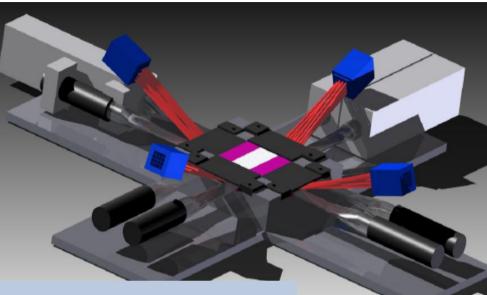
T2a: Read-out of crystalline fibers with SiPM

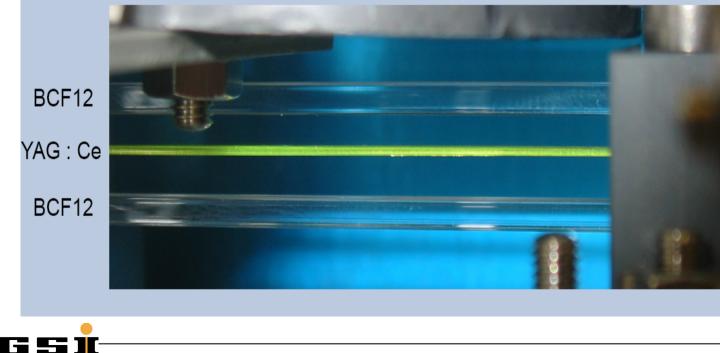
Important parameters of SiMP coupled to inorganic fibers:

Small sensor area high PDE (>30 %)
High granularity for good linearity
Fast single photon response for good timing
Working in high magnetic field
Noise performance uncritical

R&D: Planar Beam Monitor

Closely together with WP21 SciFI





e⁻ / γ beam monitor (Bonn)

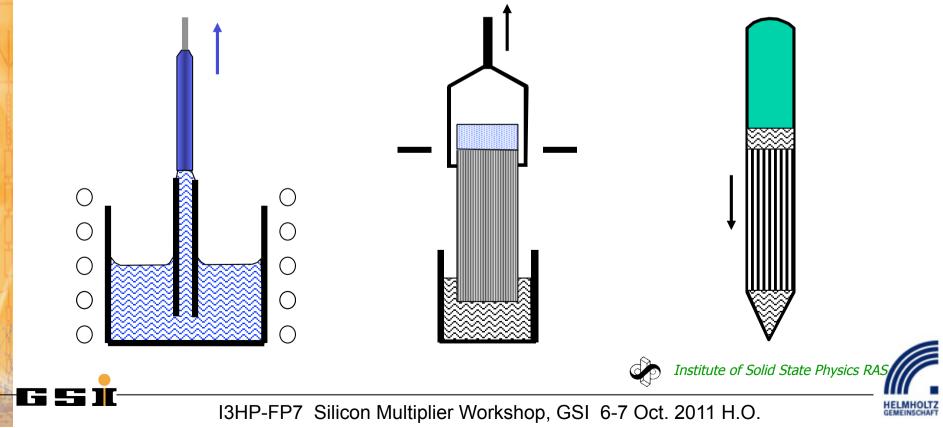
two times two crossed layers:

1st: square organic fibers2nd: round inorganic fibersreadout via SiPM

Production of inorganic fibers in Russia

Advantages of Shaped Scintillating Fibers

<u>Kurlov V.N.</u>, Klassen N.V., Shmyt'ko I.M., Shmurak S.Z., Dodonov A.M., Kedrov V.V., Orlov A.D., Strukova G.K.

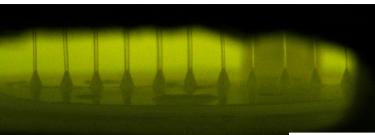

Institute of Solid State Physics Russian Academy of Sciences,

Chernogolovka, 142432 Russia

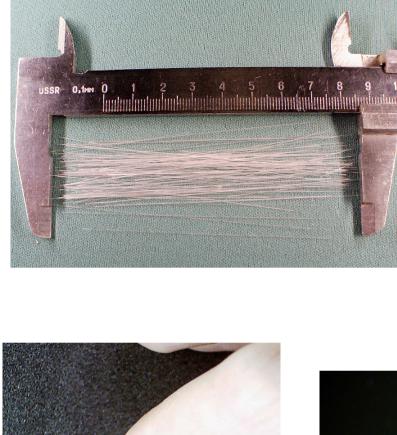
Growth techniques at ISSP (RAS) different from FiberCrist

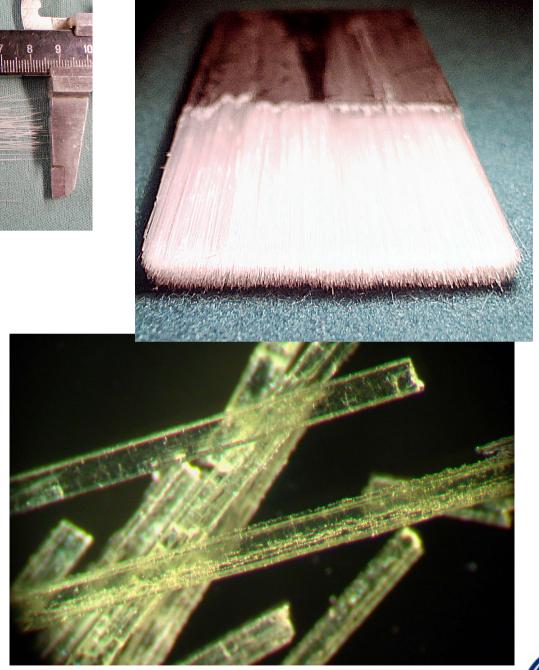
- Stepanov/EFG
- Internal crystallization method
- Modified Bridgman

G 5 1

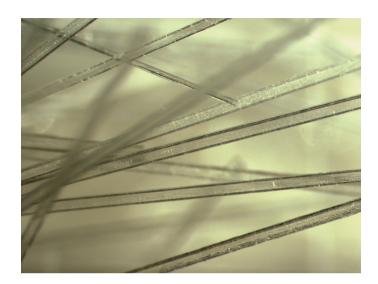


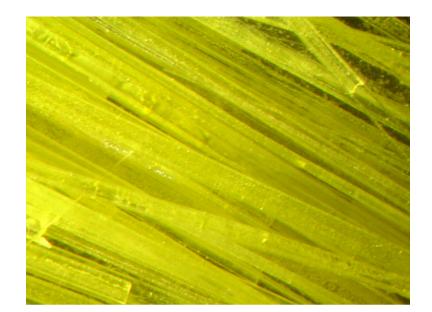

Fiber Pulling Machines at ISSP, Chernogolovka



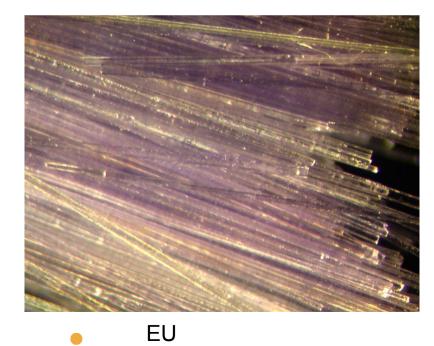

Sapphire

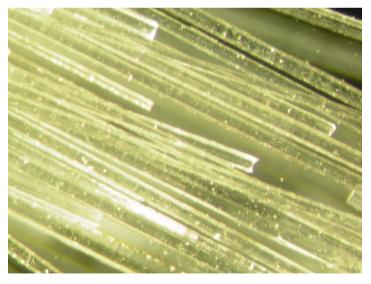
GSĬ





GSI


YAG



undoped

Ce

Workplan fo Task 2 (inorganic fibers)

TASKS/Subtasks		20	12			20	13			20)14	
TASKS/SUDIASKS	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
2. SiPM-coupled advanced fiber detectors												
2.1 SiPM for LYSO- fiber material selected and tested				6								
2.2 Inorganic fibers from Institute for Solid-State Physics, Russia												
2.3 Design of a 4 layers compact prototype for trigger/tracker				7								
2.4 Development of multi-channel highly stabilized SiPM power supplies												
2.5 Construction and tests of multi- channel integrated read-out electronics												
2.6 Prototype construction									8			
2.7 Test and characterization (in laboratory and on beams) of the prototype												9
2.8 Materials tests and read-out chip design for Shashlik calorimeter												
2.9 Production of the chip with samples tests								10				
2.10 Demonstration of in the calorimeter module												11

Milestones

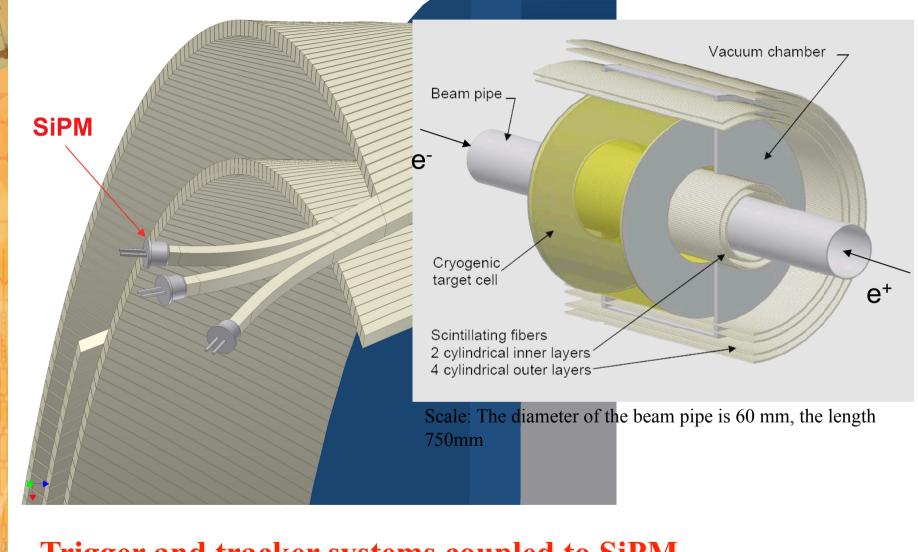
6 Readiness of SiPM for LYSO fibers

7 Design of compact trigger/tracker 8 Prototype ready 9 Report about tests in beam10 Read-out chip for fiber bundle ready11Test of integrated electronics in Shashlikmodule

T2b: SiPM-coupled advanced scintillating fiber detector

Important parameters of SiMP for low light level detection:

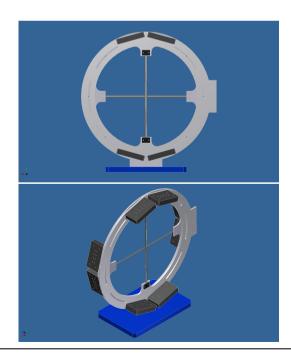
- •Large pixel area for high PDE (> 30 %)
- •Medium granularity for good linearity and without saturation
- •Fast single photon response for good time resolution
- •Working in high magnetic field


R&D: Prototype for Amadeus central fiber tracker

G S 1

AMADEUS fiber tracker within KLOE

Trigger and tracker systems coupled to SiPM


Prototype of a trigger/tracker system based on 4 layers of 30 scintillating fibers

R&D

- Integrated read-out electronic, with timing resolution of around 100 ps.
- Sensor bias feed-back system with stabilization of the SiPM working point
- Correcting for temperature and gain variations.
- Compact and integrated power supplies with stability in the order of 10 mV.
- Test of the prototype in the presence of strong magnetic fields.

Leading institutions: LNF-INFN and OeAW. IFIN-HH

> Ring system for a versatile protototype

Workplan fo Task 2 (organic scintillating fibers)

TASKS/Subtasks		20	12			20	13			20	14	
TASKS/Subtasks	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
2. SiPM-coupled advanced fiber detectors												
2.1 SiPM for LYSO- fiber material selected and tested				6								
2.2 Inorganic fibers from Institute for Solid-State Physics, Russia												
2.3 Design of a 4 layers compact prototype for trigger/tracker				7								
2.4 Development of multi-channel highly stabilized SiPM power supplies												
2.5 Construction and tests of multi- channel integrated read-out electronics												
2.6 Prototype construction									8			
2.7 Test and characterization (in laboratory and on beams) of the prototype												9
2.8 Materials tests and read-out chip design for Shashlik calorimeter												
2.9 Production of the chip with samples tests								10				
2.10 Demonstration of in the calorimeter module												11

Milestones

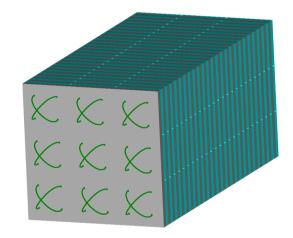
7 Design of compact trigger/tracker

8 Prototype ready

9 Report about tests in beam

10 Read-out chip for fiber bundle ready

11Test of integrated electronics in Shashlik



T2c: SiPM for fast calorimetry

Important parameters of SiMP for high light level:

- •Small sensor area with high PDE (30 %)
- •Large pixel number for good linearity and avoiding saturation
- •Fast response for good time resolution
- •Working in high magnetic field
- •Sensor noise uncritical

R&D: SiPM for Shashlik modul in COMPASS Hybrid chip design for

rs:

Electromagnetic-Calorimetry with wavelength shifting fibers

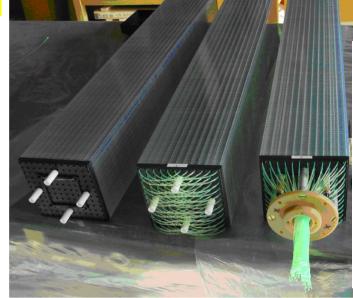
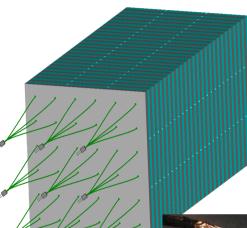
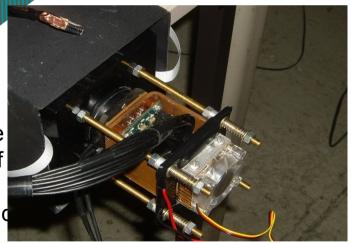
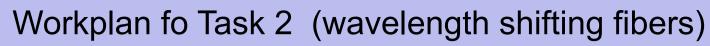




Fig. 1. The Shashlyk modules at different stages of assembly

After the construction and demonstration of the optical head in a Shashlik calorimeter module (HP2), work will be concentrated on the integrated design and construction of 3x3 MAPD matrix with light concentrators, temperature stabilization and preamplifiers. The idea is to have a hybric chip (~15x15 mm) made of non-resistive but heat-conductive material with one Peltier element on the back, 3x3 MAPD with Winston cones at the face and possibly also preamplifiers.


MAPD3N sensors +Winston cones

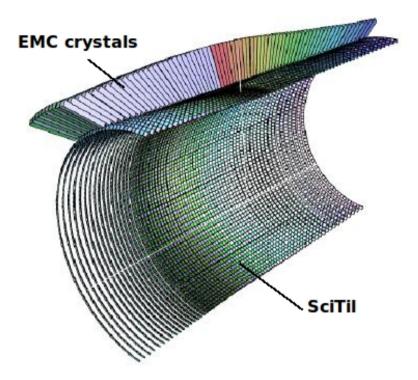
High dynamic range ~ 10^5 ph.e.

Institutions: JINR, CUNY, Zecotek Photonics.

TASKS/Subtasks		20	12			20	13			20	14	
ASKS/Subtasks	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
2. SiPM-coupled advanced fiber detectors										ſ		
2.1 SiPM for LYSO- fiber material selected and tested				6								
2.2 Inorganic fibers from Institute for Solid-State Physics, Russia												
2.3 Design of a 4 layers compact prototype for trigger/tracker				7								
2.4 Development of multi-channel highly stabilized SiPM power supplies												
2.5 Construction and tests of multi- channel integrated read-out electronics												
2.6 Prototype construction									8			
2.7 Test and characterization (in laboratory and on beams) of the prototype												9
2.8 Materials tests and read-out chip design for Shashlik calorimeter												
2.9 Production of the chip with samples tests								10				
2.10 Demonstration of in the calorimeter module												11

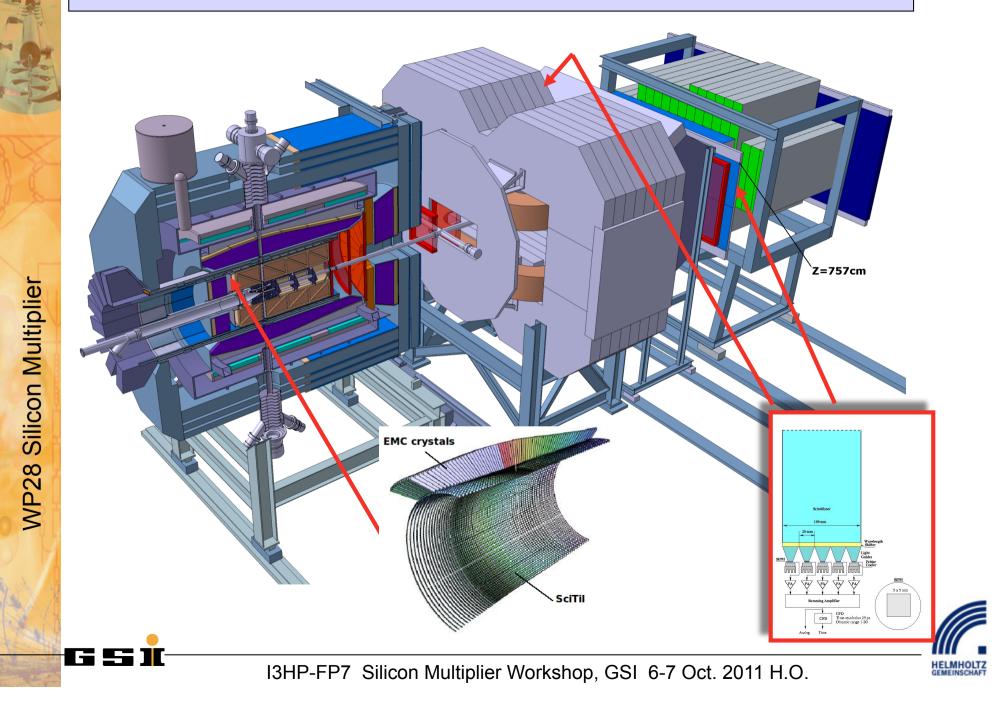
Milestones

- 1 SiPM and preamplifier selected
- 2 DAQ for photon trigger implemented
- 3 Report of laser test
- 4 Report of beam tests
- 5 64 pixel sensor matrix tested
- 6 Readiness of SiPM for LYSO fibers


- 7 Design of compact trigger/tracker
- 8 Prototype ready
- 9 Report about tests in beam
- 10 Read-out chip for fiber bundle ready 11Test of integrated electronics in Shashlik module

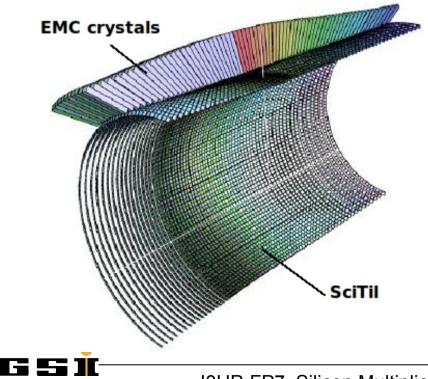
T3:Ultra-fast timing with plastic scintillators for Timing applications using SiPMs

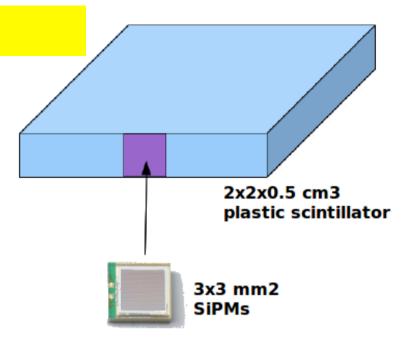
Important parameters of SiMP:


- •Large area for high PDE (>30 %)
- •High granularity for good linearity
- •Working in high magnetic field
- •Temperature stabilization
- •Fast single photon response for extrem
- time resolution

R&D: Scintillating fiber hodoscope for PANDA SiPM-coupled scintillator panel for TOF wall

PANDA Detector




Scintillating Tile Hodoscope

Timing detector for PANDA

Properties:

1 % radiation length Fast timing (100 ps) Preshower detector for converted photons Charged/neutral discrimination

+ ASIC

R&D

Simulations Selection of scintillator and mached SiPM Optimization of SiPM position Time resolution Light collection efficiency Tests in Beam

GSI, BARC, Glasgow, INR

B-ASIC: 8-channel FE ASIC for SiPM

Current mode approach

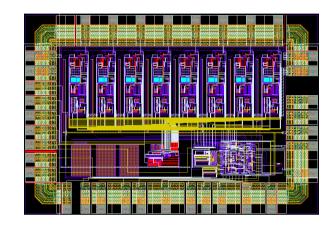
High BW (250MHz) and low $Z_{in} \sim 17\Omega$

High dynamic range: max 70pC

Low noise: ~0.3 SiPM cell

Non linearity < 1%

Programmable Gain, 3 ranges: 1V/pC, 0.5V/pC , 0.33 V/pC


 $\label{eq:Vref} \textit{Vref adjust} \rightarrow \textit{allow Vbias and Temperature control}$

Fast signal discrimination (programmable threshold)

Self-trigger: OR of the 8 fast signals

Time resolution on fast OR output ~ 650ps (worst, not RMS)

WP28 Silicon Multiplier

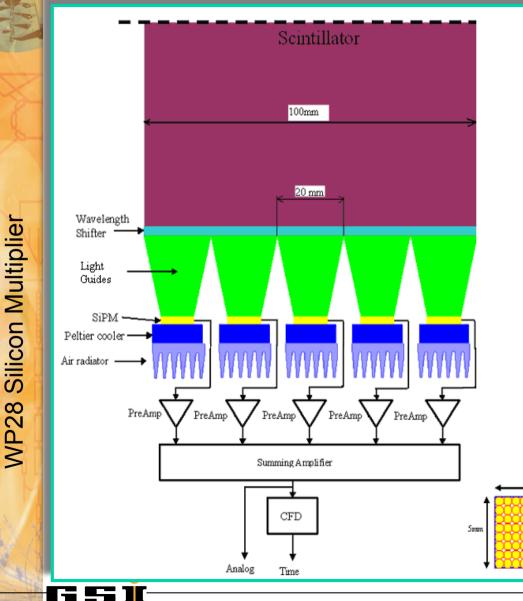
Development of front-end ASIC for Tiles based on the BASIC design (with reversed polarity)

Possible Developments for the future

1) **B-ASIC** chip 8 \rightarrow 32 channels (+ channel mask)

2) fast ADC implementation on chip

3) control scheme for temperature dependence of SiPM signal


4) additional timing information

5) migration of ASIC design to more up to date CMOS or SiGe technologies \rightarrow larger transconductance / lower power consump.

Leadings institution: INFN Pisa, FBK-irst, GSI, SMI, Glasgow

Work at PNPI (HP2)

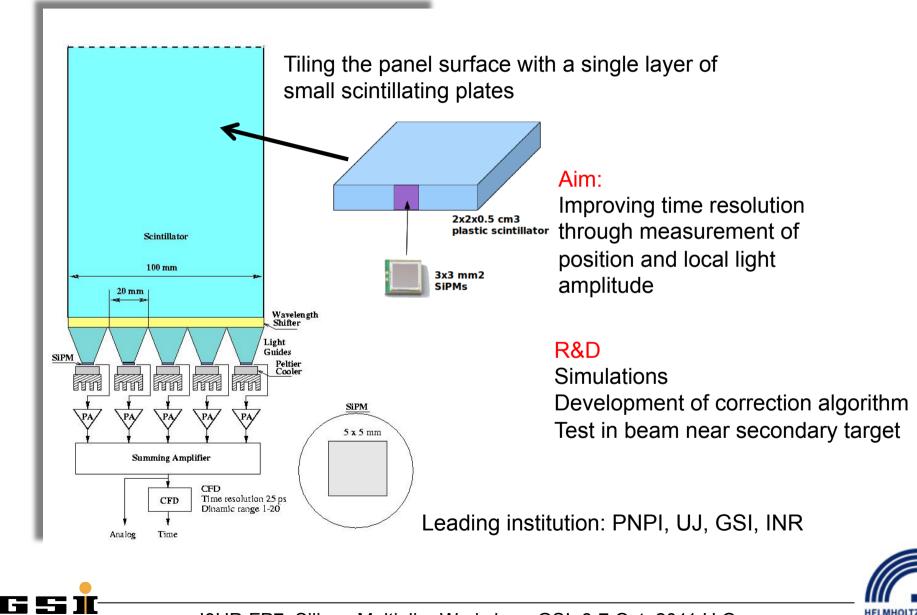
Selection of sensor type Optimization of the *time resolution* and *photon detection efficiency* Design of suitable *read-out electronic and cooling system*; Study of the *radiation hardness and aging;*

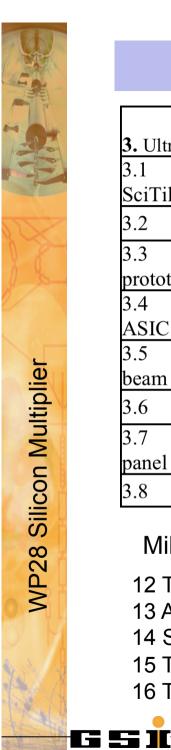
Study of temperature dependence of the *dark counts*;

Tests using PNPI 1 GeV proton beam.

For HP3

Removing light guides for better time resolution




I3HP-FP7 Silicon Multiplier Workshop, GSI 6-7 Oct. 2011 H.O.

SiMP

Tiled large Scintillator Panel

Workplan fo Task 3

3.1 Monte-Carlo Simulations of tiles for SciTil							
3.2 Selection of SiPM							
3.3 Construction and test of a tile prototype			12				
3.4 Design and construction of dedicated ASIC					13		
3.5 SciTil hodoscope tests in particle beam							14
3.6 Scintillator panel for TOF wall ready					15		
3.7 Study of TOF with tiled scintillator panel							
3.8 Beam tests							1

Milestones

12 Tile prototype13 ASIC ready14 SciTil test in beam15 TOF wall panel ready16 Test with particle beam at PNPI

Deliverables

Deliverable No. ¹	Deliverable name	WP No.	Nature ²	Dissemination level ³	<i>Delivery date</i> ⁴
WP28.1	New SiPM matrix sensor with light concentrator	28	D	PU	36
WP28.2	Characterization of the Zecotek MAPD 8x8 sensor matrix.	28	R	PE	36
WP28.3	Characterization of SiPM for LYSO fibers	28	R	PU	12
WP28.4	Prototype of SciTil hodoscope	28	Р	PU	18
WP28.5	ASIC for compact SciTil readout	28	Р	РР	24
WP28.6	Hybrid Chip for SiPM readout in Shashlik calorimeter	28	D	Р	36
WP28.7	SiPM TOF-wall panel with <<100 ps time resolution	28	D	PU	36

EC requested costs

WP28: Silicon Multinlier

			vv	P28: Sincon Mun	ipner			
	R	EQUESTED EC	CONTRIBU TIO	N PER BUDGETA	ARY ITEM AND	PER BENEFICIA	ARY	
Contr. No	Contractor Acronym	Personnel (EUR)	Durables (EUR)	Consumables (EUR)	Travel and workshops (EUR)			Requested EC contribution (EUR)
1	INFN	70,000	0	16,000	12,000	98,000	58,800	156,800
	INFN-LNF	35,000	0	8,000	8,000	51,000	30,600	81,600
	INFN-PI	35,000	0	8,000	4,000	47,000	28,200	75,200
2	OeAW	0	0	48,000	4,000	52,000	0	52,000
4	CUNI	15,000	0	14,000	4,000	33,000	6,600	39,600
9	GSI	46,000	0	45,000	15,000	106,000	9,200	115,200
18	PIG-JLU	0	0	5,000	3,000	8,000	4,800	12,800
41	UJ	0	0	12,000	3,000	15,000	9,000	24,000
45	IFIN-HH	25,000	0	2,000	3,000	30,000	6,000	36,000
51	UGlasgow	0	0	10,000	4,000	14,000	7,800	21,800
	TOTAL	156,000	0	152.000	48,000	356,000	102,200	458,200

I3HP-FP7 Silicon Multiplier Workshop, GSI 6-7 Oct. 2011 H.O.

GSI

Complementary Costs

			W	P28: Silicon Mult	iplier			
	С	OMPLEMENTI	NG RESOURCE	S PER BUDGETA	RY ITEM AND	PER BENEFICIA	RY	
Contr. No	Contractor Acronym	Personnel (EUR)	Durables (EUR)	Consumables (EUR)	Travel and workshops (EUR)	Total direct costs (EUR)	Indirect costs (EUR)	Total complementing resources (EUR)
1	INFN	80,000	15,000	36,000	9,000	140,000	84,000	224,000
	INFN-LNF	50,000	15,000	20,000	5,000	90,000	54,000	144,000
	INFN-PI	30,000	0	16,000	4,000	50,000	30,000	80,000
2	OeAW	50,000	0	3,000	2,000	55,000	43,930	98,930
4	CUNI	30,000	0	1,000	1.000	32,000	19,200	51,200
9	GSI	46,000	20,000	5,000	2,000	73,000	9,200	82,200
18	PIG-JLU	0	0	3,000	1,000	4,000	2,400	6,400
41	UJ	20,000	0	1,000	1,000	22,000	13,200	35,200
45	IFIN-HH	40.000	5,000	3,000	2,000	50,000	10,000	60,000
51	UGlasgow	20,000	7,000	2,000	4,000	33,000	19,800	52,800
	TOTAL	286,000	47,000	54,000	22,000	409,000	201,700	610,700

WP28 Silicon Multiplier

GSI

HELMHOLTZ

GSI

Summary of costs and comparison with HP2

WP28: Silicon Multiplier

INDICATIVE TOTAL COSTS AND INDICATIVE REQUESTED EC CONTRIBUTION PER BUDGETARY ITEM

	Personnel (EUR)	Durables (EUR)	Consumables (EUR)	Travel and workshops (EUR)	Total direct costs (EUR)	Indirect costs (EUR)	Total costs (EUR)
REQUESTED EC							
CONTRIBUTION	156,000	0	152.000	48,000	356,000	102,200	458,200
COMPLEMENTING RESOURCES	286,000	47,000	54,000	22,000	409,000	201,700	610,700
TOTAL BUDGET	442,000	47,000	206,000	70,000	765,000	303,900	1068,900
HP2 Requested EC	110,000	0	190,000	40,000	348,000	92,000	440,000

Summary

This JRA will continue to investigate the unique capabilities of Silicon Multipliers.

A new focus will be signal processing, well adapted to the SiPM sensor.

Development of integrated electronics is mendatory.

Direct contact to producers must be maintained.

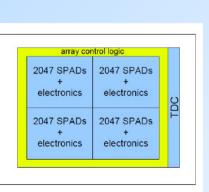
New developments, e.g. the digital SiPM , are closely observed.

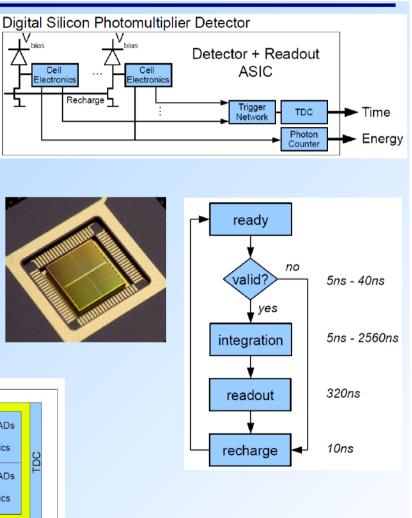
Deliverables will be:

Feasability studies and prototypes of new detector concepts for immediate use in Hadron Physics

GSI

Add ons


New developments


٦

dSiPM-Digital SiPM (Philips)

Signal from each pixel is is digitized and the information is processed on chip:

- time of first fired pixel is measured
- number of fired pixels is counted
- active control is used to recharge fired cells
- 4 x 2047 micro cells
- 50% fill factor including electronics
- integrated TDC with 8ps resolution

T. Frach (Philips) @ IEEE2009

