

WP 28 / T2

SiPM coupled advanced fibre detectors

Christoph Wendel

HISKP Universität Bonn

cwendel@hiskp.uni-bonn.de

Overview

"Proof of Concept" detector: Beam Monitor Crossed Fibre Layers

First Configuration : Square Organic Fibres electron beam dimensions / electron veto in photon beam

Second Configuration : Round Inorganic Fibres photon beam dimensions

Diploma Thesis

milled fibres vs. commercial fibres TPC Start Detector, SiPM readout

Bachelor Thesis

YAG(Ce) Fibre with SiPM readout (Prag meeting)

• Diploma Thesis

fibre hodoskop as beam monitor or fibre/SiPM test stand, build from organic and inorganic fibres (this meeting)

Overview

- Detector Design electronics/mechanics
- In Beam Performance
- Further Measurements temperature dependence of gain/noise
- Outlook inorganice fibres

Detector Concept

Selection of SiPM

SiDM	Photonique			Hamamatsu S10362-11-			SensL]
	0701BG	0611B4MM	Array	25C	50C	100C	MIcro3035]
Operating Voltage	31 V	36 V	20 V	70 V	70 V	70 V	28 V	plus some more, i.e.
active Area	1 mm ²	4,4 mm ²	1 mm ²	1 mm ²	1 mm ²	1 mm ²	8, 1 mm ²	Photonique - 2.2 x 2.2 red
Pixels	556	1700	556	1600	400	100	3640	enhanced,
Fill Faktor	≥ 70 %	≥ 70 %	≥ 70 %	30,8 %	61,5 %	78,5 %	-	- some older
Gain	$4 \cdot 10^{5}$	$0, 6 \cdot 10^5$	$4 \cdot 10^{5}$	$2,75 \cdot 10^5$	$7, 5 \cdot 10^5$	$2, 4 \cdot 10^{6}$	$1 \cdot 10^{6}$	MEPhI/Pulsar
PDE	40 %	25 %	≥ 10 %	25 %	50 %	65 %	20 %	Prototypes
λ bei max. PDE	560 nm	440 nm	560 nm	440 nm	440 nm	440 nm	490 nm	
Darkrate	1,6 MHz	2,9 MHz	1,5 MHz	600 kHz	800 kHz	1000 kHz	10 MHz	
Rise Time	$\leq 0,7$ ns	$\leq 0, 7 \text{ ns}$	$\leq 5 \text{ ns}$	$\leq 0, 3 \text{ ns}$	$\leq 0, 3 \text{ ns}$	$\leq 0, 3$ ns	$\leq 5 \text{ ns}$]

PDE / Lightyield Measurement

1st crucial question: occupancy of the sensor

depending on lightyield and global PDE (inc. FF)

Hamamatsu PDE / Lightyield

Model	# Pixel	Fillfactor	Pixels Hit
C25	1600	30,8%	~15
C50	400	61,5%	~22
C100	100	78,5%	~35

sensors cover 25% of fibre endface PDE-peak matches fibre spectrum

Photonique PDE / Lightyield

Model	# Pixel	FF*PDE	Pixels Hit
array	556	>10%	~5
1x1	556	40%	~8
2x2	1700	25%	~7?

PDE-peak in green, > 50% loss for blue measured efficiency 50% of Hamamatsu

Dark Counts

measured at lab temperature

universität**bonn**

LED-pulser tuned to expected lightlield
normalized on 10 Hz and reference PMT

Results

Hamamatsu MPPC C50 (400 Pixel) @ Bicron BCF10

performance at lab temperature:

- Signal > 10 Pixel (~22 / MIP)
- Noise <10 Hz at 6,5 Pixel</p>
- Gain <10% up to 1 MHz

Detector Design

Detector Design

- compact & robust
- Iight- and EM-shielded
- 2 mm distance between two modules

SiPM Board

- common ground connection close to all sensors
- distribution of PreAMP LV
- reflow soldered SiPMs with 2 mm pitch

PreAMP

- individual, interchangable PreAMPs
- 10V supply via SiPM board
- individual bias supply
- ~ 50x gain output

Base Frame

Light / EM Shield, Fibre Frame

Detector Material / Sensor Holder

Sensors / PreAMPs

First Detector Module

myon-beam, self trigger

- siginificant temperature drift:
 observed during 10 K thunderstorm drop
 - SiPM V_{Br}
 - Bias Supply
 - PreAMP, ...

- good performance
- simple and easy to use, robust detector

positron-beam, external trigger

universität**bonn**

Gain vs. OV : ~18,5 mV / (V · Pixel)

SiPM- Noise vs. OV

~ 1 Order of Magn. / 40 K (dep. on OV)

Bias Powersupply

- drift enhances (32%)
 breakthrough effect
- responsible component identified

Roadmap

Detector: temperature control for SiPM, AMP and PS data analysis

Detector Cosmetics: smaller connectors, differential output, ...

Inorganic Fibres: installing fibres taking data

1 mm Round LUAG Fibres, 10 cm Long

Fibres

END

Fibre Closeup

Detector Matching

Center: Silicon Strip Detector

*different colour scale

Time Resolution

Breakthrough Determination

Overvoltage Determination

1st Inorganic Fibre Tests

Expected Response

2 mm square organic (i.e. BCF 12 MC)		0,5 mm round inorganic YAG : Ce
1,8 - 2,6 MeV * cm / g	Material	1,4 - 2,4 MeV * cm / g (*)
1,9 - 2,7 MeV / cm	1,05 g/cm ³ Density 4,57 g/cm ³	6,4 - 11,0 MeV / cm
0,38 - 0,55 MeV	2 mm Thickness ~ 0,35 mm	0,22 - 0,38 MeV
3024 - 4368 Ph	8k Ph/MeV Lightyield 12k-25k Ph/MeV	2911 - 9597 Ph (**)
221 - 319 Ph	>7,3% Trapping Eff. ~ 5%	146 - 480 Ph
55 - 80 Ph	25% PDE @ λ 18%	26 - 86 Ph
	Coupling	

universität**bonn**

Measured Response

Pulse Form

TPC Start Detector

- inorganic scintillating fibres (abandoned spring 2009)
 - bright, but... high $Z \rightarrow$
 - high photon conversion propability
 - large proton scattering angle

two layers of ~300 square (2 mm) plastic scintillator fibres (MC)

- small scattering angle
- ~ 20 photoelectrons at 30 cm
- fibre tests finished

