The PANDA Barrel DIRC

Carsten Schwarz, 🖬 🖬 🏦

Introduction **Overview** Focusing Radiator Photon detector Test experiments Readout

FAIR Facility for Antiproton and Ion Research

Physics topics

Charmonium and open charm spectroscopy

Confinement

- Search for charmed hybrids and glueballs Formation of color neutral object
- Modification of charmed mesons in nuclear matter

Restoration of chiral symmetry

- Hypernuclei
- Nucleon structure

Detector Requirements

nearly 4π solid angle for PWA high rate capability: $2x10^7 \text{ s}^{-1}$ interactions (average) efficient event selection (triggerless DAQ) momentum resolution ~1% vertex info for D, K_S^0 , Λ ($c\tau = 317 \mu \text{m}$ for D[±]) good PID (γ , e, μ , π , K, p) photon detection 10 MeV – 15 GeV

PANDA PID Requirements:

Particle identification essential for PANDA Momentum range 200 MeV/c – 10 GeV/c Several methodes for PID needed

PID Processes:

Cherenkov radiation:

Radiators: quartz

Energy loss: below Cherenkov threshold

TPC or Straw Tubes

Time of flight

Challenge: no start detector, relative timing

Electromagnetic showers: EMC for e and $\boldsymbol{\gamma}$

Cherenkov detectors

Barrel DIRC

Detection of Internally **R**eflected **C**herenkov light

9

Barrel DIRC

PANDA Barrel DIRC, initial design similar to BaBar

96 Fused silica bars, 2.5m length Scaled: Water tank & 7000 PMTs

98% kaon efficiency

2% pion miss id.

Current design of Barrel DIRC

More compact, faster, focusing optics 80 radiator bars, synthetic fused silica 17mm (T) × 33mm (W) × 2500mm (L) Focusing optics: lens system

Compact photon detector: array of Burle Planacon MCP-PMT G-APD total 7000-10000 channels.

Fast photon detection: MCP-PMT fast TDC/Time Over Threshold electronics

 \rightarrow 100-200 ps timing.

Still investigating several design options:

mirror focusing, radiator plates, photon detection outside magnetic field

Simulations in PandaRoot

Design is being optimized

Fast reconstruction algorithm being developed

→ Maria Patsyuk, tomorrow

Lenses: Antireflex Coating

Example:

 \rightarrow Needs R&D effort to find optimum for barrel DIRC

Other focusing options

Focusing mirrors

Forward focusing mirror

Radiator Quality Test Motion-controlled scanning setup

- 1) Laser (405, 532, 635 nm)
- 2) Polarizer
- 3) Beam splitter
- 4) Diaphragm
- 5) Brewster mirror
- 6) Bar on x, y stage
- 7) Value Diode
- 8) Reference Diode

Grzegorz Kalicy, PANDA Collaboration Meeting, 14.03.2011

Radiator Quality Test Results: Schott Lithotec, 80cm bar

Grzegorz Kalicy, PANDA Collaboration Meeting, 14.03.2011

DIRC2011, April 5th, Rauischholzhausen

ri sa

Radiator Quality Test Results: Lytkarino LZOS, 30cm bar

Grzegorz Kalicy, PANDA Collaboration Meeting, 14.03.2011

September 2007 Short bars from MIASS

March 2011 Long bars Heraeus Spectrosil from Saint Gobain

Polished by LZOS, Lytkarino, Russia

Radiator Quality Test Results: Heraeus bars

Bar cross section

Tested inexpensive alternative production methods with Heraeus.

- Production of the Heraeus bars using extrusion method - lateral sides of the bars are curved.
 - Surface melting of ground bars better, but surface roughness still not sufficient for PANDA DIRC.
 - Several bars with different production parameters checked (temperature, feed-through speed).
 - Heraeus production methods cannot reach so far requirements for optical properties of radiators (bar shape, surface roughness).

Grzegorz Kalicy, PANDA Collaboration Meeting, 14.03.2011

Extruded bar

Radiator next steps

Finish setup for long bars
1225mm bars from InSync (old BaBar bars)
Production of Zeiss bars

HIM, JGU Mainz

How a polished bar looks like? Lithotec #1

no shape distortion visible

The surface molten bars show too large edge rounding. Not an option for barrel DIRC bars.

Plates? Surface roughness: 40Å

K. Inami Fast timing workshop, Saclay 2007

Long life times are in principle possible

T. Ninno et al., Lifetime-Extended MCP-PMT

Al protection layer on 2nd MCl Regains CE~60%

Fig. 1: Relative QE vs. \sum_{Q} . Plotted are for R3809U-50-11X (CT0790) and SL10's (YJ0011, XM0001, XM0020 and XM0027). arXiv:1010.1057v1 [physics.ins-det] 6 Oct 2010

Start counter Proton beam 2 GeV

CBM setups

.

TOP option setup

PERMIT

Focusing option setup

Barrel DIRC setup

Readout electronics

Barrel DIRC: Ring Imaging

move MCP PMTs by 15mm each → does the ring stay in place? (in box coordinates) It does.

Read out

mismatch in amplitudes for fast/slow

possible problem for time over threshold

Read out New design

Test board

We are currently investigating the new add-on boards.

Three boards

(3 x 128#)

produced

2011 test beam opportunities for PANDA DIRCs

Barrel DIRC plans to participate in both.

Focus on technical aspects at GSI beam, commissioning of new prototype and DAQ. Focus on imaging, timing, and sensor tests at CERN.

Glasgow disc plans to participate in beam at CERN.

Any other takers?

GSI test beam 2011

June 14-19 (following long Pentecost weekend) Same cave as 2009 Pion beam from secondary target (nitrogen primary beam),

 $p=1.7 \text{ GeV/c}, 10^4-10^5 \text{ particles per spill},$

2-10 second extraction

	W	eek	22		Week 23							Week 24							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
UMAT, Severin/Trautmann, Au (PIG), 50 Hz, 3 ms, X0					U261, Rudolph/Düllmann, 48Ca10+ (EZR), 4.5-5.5, 60 particleMicroAmps in Pulse in X8, 50 Hz / >= 5 ms, X8 TASCA							U264, Block, 48Ca (EZR), 4-5 MeV/u, pnA, 50Hz, 5ms, Y7 SHIPTRAP						1000	
							U265, Roth/Blazevic, 48Ca20+, 3,6 MeV/u, >10 μA, Z6												
4	a)	S339, Hartmann/Leifels, 14N (MUCIS), 2 GeV/u , 5E10/spi pion target, HTB											pill, extr. 1-2 sec, fast ramping, 124 70 1e8						
	S333, Salat Stroth, Au (ura/Pietraszko, Traxler, PIG), fast ramping, HAD								S386, Schwarz/Schwarz, 14N, 2 GeV, >1e10, 10s extraction, pion target, block mode, HTD						
		E075, Herfurth, 14N (MUCIS), 1e6 / cycle afte ESR, cooling and decel in ESR, HITRAP							N after ecel.										

CERN test beam 2011

July 11-21 T9 beam line, PS (East Hall) Hadron beam, p=1-15 GeV/c π and K.

Beam instrumentation available. (Fast start time?)

10 days include time for setup and removal and one day for machine development.

We need to factor in one weekday for paperwork to get accounts, access card, rad training, etc.

Period 3 2011 Jul 5 to Aug 9

Schedule issue date: 16-Feb-2011

PS

Operation

Version 0.0

(colour code: purple (dark) = scheduling meeting , light green (light) = weekend or holiday)

Prototyp 2

Summary

- PANDA includes two DIRCs for PID
 - Barrel DIRC similar to BaBar DIRC
 - Endcap Disk DIRC
- R&D activities
 - radiator quality, focusing optics
 - photon detectors, readout electronics
 - simulation, reconstruction... → Talk by Maria Patsyuk tomorrow
- Test experiments for small scale prototypes

