

SiPM for HEP detectors

Erika Garutti (DESY)

Outline

- Review of commercially available SiPM
 - Comparison of properties
- A HEP detector with SiPM
 - Stability / spread of SiPM parameters
 - Readout electronics
 - Monitoring system
- Conclusions

Electron

Sources and useful references

• Alliance detector school on SiPM:

https://indico.desy.de/conferenceOtherViews.py?view=standard&confld=3279 Overview of available SiPMs, pros/cons (Jelena Ninković, MPI)

 Industry-academia matching event on SiPM and related technologies <u>https://indico.cern.ch/conferenceTimeTable.py?confId=117424#20110216</u>
 State of the art in SiPM's (Iouri Musienko)
 Review of ASIC developments for SiPM signal readout (Wojtek Kucewicz) Electron

What is available

MEPhI/Pulsar (Moscow) - Dolgoshein CPTA (Moscow) - Golovin Zecotek(Singapore) - Sadygov Amplification Technologies (Orlando, USA) Hamamatsu Photonics (Hamamatsu, Japan) SensL(Cork, Ireland) AdvanSiD (former FBK-irst Trento, Italy) STMicroelectronics (Italy) **KETEK** (Munich) RMD (Boston, USA) ExcelitasTechnologies (former PerkinElmer) MPI Semiconductor Laboratory (Munich) Novel Device Laboratory (Beijing, China) Philips (Netherlands)

Every producer uses its own name for this type of device: MRS APD, MAPD, SiPM, SSPM, MPPC, SPM, DAPD, PPD, SiMPI, dSiPM...

Electron

SiPM basics

Pixel recovery time

- The time needed to recharge a cell after a breakdown depends mostly on the cell size (C_{pix}) and the quenching resistor (R_q).
 Recovery time of SINGLE pixel:
 - $\tau = R_q C_{pix}$

typical values:
$$R_q \sim 0.5-20M \Box$$
, $C_{pix} \sim 20-150 fF$
 $\Box \sim 20 ns$ - few μs

Polysilicon resistors are T dependent
 favor high resistivity metal alloy

Important for design of readout electronics: Integration or shaping time has to match SiPM signal length, otherwise loss of gain

Electron

Gain

Each pixel is a binary device – several photons hitting the same cell at the same time produce the same charge (Q)

- $Q = C_{pix}(U_{bias} U_{bd})$
- As the SiPM is operated in Geiger mode the G $\sim 10^5 10^7$
- Single photoelectrons produce a signal of several mV on a 50 Ω load

3000 Events 2500 If full charge is integrated pre-3 pe 2000 amplification x1-5 is adequate gain 0 pe 1500 Normally not the case with 4 pe decoupling circuits or short 1000 shaping times (x10-50 needed) 500 00 20 40 60 80 140 160 120 180 Charge [QDC-Channels] 14-15 March 2011 erika.garutti@desv.de

Electron

Dark Rate

 Electron hole pairs generated without the involvement of photons give rise to unwanted noise

- Two processes
 - Thermal excitation
 - Field assisted excitation (tunneling)
- Electron (hole) drifts into the high field region and causes avalanche breakdown
- Resulting signal is indistinguishable from a photon induced signal

Rule of thumb:

The thermal generated dark rate doubles for each temperature increase of 8 °C

Dark-rate rises exponentially with the applied overvoltage (this will lower the gain and the PDE!)

Electror

erika.garutti@desy.de

Optical crosstalk

A p-n junction in breakdown emits photons in the visible range (~ 3×10^{-5} per charge carrier with a wavelength less than 1 µm*) If they reach a neighboring pixel additional breakdown can be caused

* A. Lacaita, et al., IEEE Trans. Electron Devices ED-40 (1993) 577

Optical crosstalk

- responsible for the high rate at thresholds >1.5 p.e.
- Increases with overvoltage (or gain)

Limit to the SiPM sensitivity Influence on acquisition rate & electronics design

14-15 March 2011

Electror

Optical crosstalk II

Trenches separating neighboring pixels Introduced by CPTA /Photonique MPPC: At fixed gain values, small pixel devices have a higher crosstalk probability (average photon travel distance shorter) SensL: small cross-talk due to

trenches between pixels <u>Solution: optically separate cells trenches</u> Trench Al SiO₂ Quenching Resistor p⁺ Bulk Silicon

(D. McNally, G-APD workshop, GSI, Feb. 2009)

Electron

After-pulse

carriers can be trapped during the avalanche discharge and then released \rightarrow trigger a new avalanche during a period of several 100 ns after the initial breakdown

Solution:

Cleaner/better technology

- Longer recovery time (large quenching resistor)
- Lower gain

14-15 March 2011

erika.garutti@desy.de

Electron

Temperature dependence Electron ×10³ S10362-11-100C No180 S10362-11-100C No180 Breakdown Voltage [V] Gain 6000 69 S10362-11-050C No163 S10362-11-050C No163 5000 68.5 Tadday (UniHei) (constant bias voltage) 4000 68 $135 \cdot 10^3 / k$ 3000 67.5 $37 \cdot 10^3/k$ 2000 67 . ک 1000 66.5 -10 5 n 5 20 25 30 25 30 10 15 -10 5 20 Temperature [°C] Temperature [°C]

Temperature coefficient

 $dU_{break}/dT = 56\,mV/K$

Interaction with phonons (vibrations) slows down the charge carriers -> Higher field needed for breakdown Large pixel capacitance causes large temperature dependence

$$\frac{dG}{dT} = -\frac{C_{pixel}}{qe} \cdot \frac{dU_{break}}{dT}$$

Photo-detection efficiency

Definition:

 $PDE = \frac{Number \ of \ detected \ photons}{Number \ incident \ photons}$

In case of a SiPM:

$$PDE = \epsilon_{geo} \cdot QE \cdot \epsilon_{trigger}$$

$$\epsilon_{geo} = \frac{A_{sensitive}}{A_{total}} \quad \text{(fill factor)}$$
$$QE = Quantum \ efficiency$$

 $\epsilon_{trigger} = avalanche trigger probability$ depends on U_{over} and position (λ)

Fill factor

Photoemission image

SensL, $35\mu m$ pixels

J.Ninkovic (MPI)

Electron

Blue/UV sensitivity

•The triggering probability depends on the position where the primary electron-hole pair is generated and it depends on the overvoltage.

•Electrons have in silicon a better chance to trigger a breakdown than holes (larger ionization coefficient). A conversion in the p+ layer has the highest probability to start a breakdown.

Standard SiPM structure (n-on-p), most of producers

Inverted structure produced by MEPhI/Pulsar & Hamamatsu

Electron

Wavelength dependence of PDE linked to depth of penetration of photon

Blue (470nm)	0.6 µm
Green (525nm)	1.2 µm
Yellow (590nm)	2.2 µm
Red (625nm)	2.9 µm

Photo-detection efficiency II

PDE absolute values sometimes includes

cross-talk and after-pulsing

Non-linear response function

Linear response only when the number of detected photons ($N_{photon} \times PDE$) is significantly smaller than the number of cells N_{total} .

$$A \approx N_{firedcells} = N_{total} \cdot (1 - e^{\frac{N_{photon} \cdot PDE}{N_{total}}})$$

correct for an "ideal" SiPM (no cross-talk and no after-pulsing) as long as light pulses are shorter than pixel recovery time

Limit to the system dynamic range Requires correction of non-linear response (individual/global curve) Reduces acceptable spread in light yield of a system

MEPhl/Pulsar

High dynamic range \rightarrow MAPD from Zecotek

Micro-well structure at 2-3µm depth with multiplication regions located in front of the wells offer 10000–40000cells/mm² and up to 3x3mm² in area were produced by Zecotek

of a number of incident photons N

No quench resistors instead specially designed potential barriers are used to quench the avalanches. 14-15 March 2011 erika.g

Spread in parameters

Electron

Hola

Spread in parameters II

<u>Device uniformity itself is considered to be much better.</u>

erika.garutti@desy.de

Spread in parameters III

$$4 \approx N_{firedcells} = N_{total} \cdot (1 - e^{\frac{N_{photon} \cdot PDE}{N_{total}}})$$

 $\sim 20\%$ spread in $N_{\rm total}$

→ Requires precise measurement of single response function

Typical LY (specific application) 10-20 pix

→ Change in dynamic range ch.-to-ch.

Electron

SiPM applications in HEP experiments

SiPM pioneering experience

R&D for Calorimeters for the ILC

The history:

- After the LHC detectors (radiation hard / dense particle environment)
- The next generation HEP experiments → precision experiments
- New paradigm for precision measurements in a jet environment

→ Particle Flow

a concept to improve the jet energy resolution of a HEP detector based on:

proper detector design (high granular calorimeter!!!)
+ sophisticated reconstruction software

PFlow techniques have been shown to improve jet E resolution in existing detectors, but the full benefit can only be seen on the future generation of PFlow designed detectors Requires the design of

- a highly granular calorimeter, O(1cm²) cells
- dedicated electronics, O(20M channels)
- high level of integration

14-15 March 2011

erika.garutti@desy.de

Electror

Next step towards a ILC detector

110 cm

clock

➔ Work on integration and scalability issues ^{~ cm} (integrated electronics/ power pulsing/ data acquisition..)

36 cm

25/43

Redundant monitoring and calibration system

Next generation monitoring system

System task: SiPM gain calibration via single photoelectron peak spectra (~1-2 p.e.) long term stability via response @ medium light (~20-100 p.e.) measure SiPM saturation level (~2000 p.e.)

Two technological solutions:

Light distributed by notched fibres

Light directly on tile by SMD-LED

- distributed LED

Electron

100 200 300 400 500 600

700

channel

100 200 300 400 500

600 700

channel

Direct coupling of SiPM to scintillator

Coupling via WLS fiber has the advantage of higher uniformity: - light from the whole tile is collected and guided to the SiPM

Direct coupling → non-uniformity of light collection

Special optimization of SiPM coupling through a dimple in the scintillator allows to recover good uniformity

(study: MPI Munich)

14-15 March 2011

erika.garutti@desy.de

29/43

Electron

The design solution

T2K experiment

MPPC

Electron

Hole

- Basic element of the near detector scintillator subsystem (INGRID, POD, FGD, ECAL, SMRD)
 - Extruded scintillator bar with embedded Y-11 fibre read out by individual MPPC in coupler
 - 56000 channels in total

Connectors for POD/ECAL/SMRD

Cherenkov light r/o

Coupled to 3x3 mm² MPPC, 50um pixel

Possible application in Dual readout calorimetry (CLIC?)

14-15 March 2011

First test of Cherenkov light detection from Sapphire and lead glass tiles

S. Jungmann, diploma thesis, Heidelberg

Tested at DESY TB with 3 GeV electrons

Signal of Cherenkov Tile, low range

After optimization of coating and coupling LY sufficient for calorimeter application LY uniformity under study

Electron

Readout electronics for SiPM

Overview of SiPM ASICs

Crucial for a multi-channel detector with SiPM is a proper r/o chip

Tested in multi-channel applications:

- 1. FLC_SiPM- Orsay
- 2. MAROC Orsay
- 3. SPIROC Orsay
- 4. NINO CERN
- 5. PETA Heidelberg
- 6. BASIC Bari/Pisa
- 7. SPIDER Siena/Pisa
- 8. RAPSODI Krakow

Review of ASIC developments for SiPM signal readout (Wojtek Kucewicz)

Electron

Overview of SiPM ASICs II

Chip Name	Measured quantity	Application	Input configuration	Technology	
		ILC Analog			
FLC_SiPM	Pulse charge	HCAL	Current input	<i>C</i> MOS 0,8 <i>µ</i> m	
		ATLAS			
MAROC	Pulse charge, trigger	luminometer	Current input	SiGe 0,35 µm	
	Pulse charge, trigger,				
SPIROC	time	ILC HCAL	Current input	SiGe 0,35 µm	
			Differential		
NINO	Trigger, pulse width	ALICE TOF	input	CMOS 0,25 µm	
	Pulse charge,		Differential		
PETA	trigger,time	PET	PET input		
BASIC	Pulse height, trigger	PET	Current input	CMOS 0,35 µm	
SPIDER	Pulse height, trigger,				
(VATA64-HDR16)	time	SPIDER RICH	Current input		
RAPSODI	Pulse height, trigger	SNOOPER	Current input	CMOS 0.35 µm	

Review of ASIC developments for SiPM signal readout (Wojtek Kucewicz)

14-15 March 2011

Electron

Overview of SiPM ASICs III

Chip Name	# of channels	Digital output	Power supply	Area [sqr mm]	Dynamic range	Input resistance	Timing jitter	Year
FLC_SiPM	18	n	5V (0,2W)	10			-	2004
MAROC2	64	У	5 V	16	80 p <i>C</i>	50 Ω		2006
SPIROC	36	У	5 V	32				2007
NINO	8	n	(0,24W)	8	2000 pe	20 Ω	260 ps	2004
PETA	40	У	(1,2W)	25	8 bit		50 ps	2008
BASIC	32	У	3,3 V	7	70 pC	17 Ω	~120 ps	2009
SPIDER (VATA64-HDR16)	64	n		15	12 pC			2009
RAPSODI	2	У	3,3 V (0,2W)	9	100 pC	20 Ω	-	2008

Review of ASIC developments for SiPM signal readout (Wojtek Kucewicz)

14-15 March 2011

Electron

LICO The FLC-SiPM chip (one channel scheme) Calorimeter for IL Single chapnel 100Mo Flectron ~ $40k\Omega$ lole **HV** tune **ILC-SIPM** 0.1pF 2.4pF PM signal with resistivity of 2M 8-bit DAC ASIC chip 0.2pF 1.2pF 0-5V 0.4pF 0.6p SIPM 0.8pF 0.3p input $2k\Omega$ $4k\Omega$ decoupling MUX 24pF 10pF 10kΩ output 4pF 2ph 1ph 201 test 🗖 8pF Input 6bF 1pF 3pF ntin nhn x18 ch. Signal hold Variable Gain Charge Variable Shaper CR-RC² Preamplifier calibration mode Charge **16 CR** (RC)² shapers 200 preamplifier 40-180 ns shape time mplitude [mV] 16 selectable gain factors -100 36/43 from 0.67 to10 V/pC -200 -250 -50 50 100 150 200 300 350

time [ns]

The SPIROC chip

Current challenges in chip understanding:

- 16 cell analog buffer memory → characterize properties
- sample and hold method

 determine spread

The SPIROC chip (one channel scheme)

A look into the future

Future trends

Future trends

Digital SiPM – The Concept

IEEE Nuclear Science Symposium / Medical Imaging Conference, Orlando, FL October 28, 2009

Industry-academia matching event on SiPM and related technologies:

http://indico.cern.ch/internalPage.py?pageId=0&confId=117424

digital SiPM (dSiPM)

Integrated readout electronics is the key element to superior detector performance

14-15 March 2011

Electron

Digital SiPM

4 identical sub-pixels with 2047 microcells each Microcell size 30µmx52µm, 50% fill factor including electronics

PHILIPS Temperature Dependence

¹ K. Burr et al, Nuclear Science Symposium Conference Record, N18-2, 2007 ² R. Mao et al, IEEE Transactions of Nuclear Science, vol. 55, 2008 ³ C. Kim, Nuclear Science Symposium Conference Record, M07-113, 2005 www.philips.com/digitalphotoncounting Philips Digital Photon Counting, October 27th, 2009

- 1 bit inhibit memory in each microcell to enable/disable faulty diodes
- Active quench & recharge, on-chip memory and array controllers
- Integrated time-to-digital converter with σ = 8ps time resolution
- Variable trigger (1-4 photons) and energy (1-64 photons) thresholds
- Acquisition controller implemented in FPGA for flexibility and testing

Concluding considerations

• SiPM is an innovative technology for photo-detection

- which opens revolutionary possibilities in detector development
- HEP has been the driving field for SiPM developments
- Crucial for the operation of a multi-channel detector with SiPM
 - as small as possible spread of SiPM parameters OR precise characterization measurements of single photo-sensor
 - adequate readout chip
 - adequate monitoring system
- SiPMs may become the replacement of PMTs
- SiPM with digital readout is a further step in system simplifications

→ electronics, integration, low cost

Electron

BACKUP

If this effect is not properly considered result in too large values of PDE (values larger than one are possible)

Gain and single pixel charge

Each pixel is a binary device – several photons hitting the same cell at the same time produce the same signal (Q)

$$Q = C_{pix}(U_{bias} - U_{bd})$$

(Y. Musienko, NDIP-05, Beaune)

For linear device a measured charge:

 $\mathbf{Q} = \mathbf{N}_{\text{pe}} \ \mathbf{G} \ \mathbf{q}_{\text{e}}$

For SiPM this holds only at small ΔU as more than 1 pixel is fired by 1 primary photoelectron

$$G = n_p \frac{Q}{q_e}$$

where n_p is average number of pixels fired by one primary photoelectron (>1) due to:

• optical cross-talk between pixels

after-pulsing

Electron

Radiation hardness issue

Electron

Hole

Relevant for applications in rad. hard environment: what is the SiPM tolerance

SiPM radiation hardness

Neutron irradiation by reactor ($E_n 0.8-1.2 \text{ MeV}$)

Only thermal noise increase after 10^9 n/cm², no other significant effects on Gain and response function Gamma irradiation with ⁶⁰Co \rightarrow noise below MHz till 60Gy

14-15 March 2011

erika.garutti@desy.de

Electron

Future trends

PHILIPS How to replace old-fashioned PMT's?

- Make the SiPM digital
 - 1 pixel

- Increase integration
 - 2 x 2 pixel on one chip (die)

- Assemble arrays
 - 8 x 8 pixels on one PCB (tile)

Industry-academia matching event on SiPM and related technologies: http://indico.cern.ch/internalPage.py?pageId=0&confld=117424

Electron