The WASA FLG Disc DIRC

Focussing Light Guide

Klaus Föhl AG Düren II. Physikalisches Institut Universität Gießen

DIRC11 Rauischholzhausen 5 April 2011

Contents

- Why a DIRC for WASA at COSY in Jülich?
- Which DIRC design are we going for?
- What prototypes are we building?

DIRC-at-WASA group with people from:

- •Bonn University
- •Erlangen University → talk Adrian Schmidt
- •Gießen University
- •Jülich Research Centre
- •Tübingen University → talk Evgueny Doroshkevich

WASA experiment at COSY, Jülich

COSY in Jülich (COoler SYnchrotron) proton storage ring

WASA forward direction $\vartheta = 3^{\circ}$ to 17°

WASA – from CELSIUS to COSY

Higher energies → demanding requirements

- Upgraded detectors
 - Energy reconstruction improved by 10-20%
 - Better granularity; Faster response

WASA at COSY

COSY allows higher energies than CELSIUS where WASA resided in the past

Fast Simulation. Signal/Background

Eta': pp → ppη' (p=3.35GeV/c)

entire range is punch-through energies

most energies below light transmission threshold for vertical radiator disc

WASA at COSY

COSY allows higher energies than CELSIUS where WASA resided in the past

Phase Space & Detector Thresholds

How to build DIRC-at-WASA?

lots of candidates

Disc DIRC designs for PANDA & WASA

use Lightguides ?

with focussing and chromatic correction

Focussing & Chromatic Correction

use 3D Disc DIRC?

light guide imaging resolution

Performance values

		Error source	<u>Error value</u> [σ in mrad]		
		focussing spot size	0.5÷1.1	0.9÷4.3	~2
		detector granularity (θ component)	0.6	3.1÷6.2	11
		finite FLG width (φ component)	<1.7÷4.8	2.9;11.5	~5÷20
		chromatic error	1.5	<1.5 (5*)	2.5
J	$\overline{}$	blurring by angular straggling	0.5	0.5	1.5÷2.0
		TOP smearing	5.3	-	-
		TOP detector resolution $\sigma t = 60 ps$	8.2	-	-
		path length uncertainty	2.2	-	-
	$\left(\right)$	RMS shift: angular straggling	0.8	0.8	2.4÷3.2
	$ \rightarrow $	tracking precision upstream of DIRC	0.4	0.4	0.8 (2)
		track curvature in B field	0.1	0.1	0
			3D2011	FLG2008	DIRC-at-WASA

3D2011 Error value $[\sigma]$ Error source

~ 1

- 0.5÷1.1 mrad finite spot size of focussing light guide curvature, 20 mm radiator thickness 0.6 mrad detector granularity of 64 μ m pixel size (θ component only)
- <1.7÷4.8 mrad finite FLG width (15mm) effect (φ component) (θ=7.5° and 15°), octagon 1.5 mrad ca. chromatic error (ranges 400nm÷500nm; 500nm÷700nm 0.5 mrad angle blurring by angular straggling p = 4 GeV/c (α 1/p)
 - 5.3 mrad TOP smearing (FLG & 400-500nm, d=20mm, 1m 2D path length)
 - 8.2 mrad TOP detector resolution σt =60ps (1m 2D path length)
 - 2.2 mrad path length smearing (1m 2D path length, AOI 30° 15mm FLG
 - 0.8 mrad RMS shift: angular straggling for p = 4 GeV/c (β =1, SiO2, d=20mm)
 - 0.4 mrad tracking precision upstream of DIRC radiator disc for p = 2 GeV/c
 - 0.1 mrad track curvature in B field, p = 2 GeV/c and $\theta = 18$ degrees at target vertex

FLG2008 Error value [σ] Error source

0.9÷4.3 mrad finite spot size of focussing lightguide curvature, 15 mm radiator thickness

- 3.1÷6.2 mrad detector granularity of 1.5 mm pixel size (θ component only)
- 2.9 ; 11.5 mrad finite FLG width (50mm) effect (φ component)
 - 5 mrad chromatic error uncorrected (constant PDE for λ =300nm÷600nm)
- <1.5 mrad maximum chromatic error with LiF correction plate
- 1.4 mrad angular straggling of saturated particle p = 2 GeV/c

numbers for circle shift and smearing

0.4 mrad tracking precision upstream of DIRC radiator disc for p = 2 GeV/c

0.1 mrad track curvature in B field, 2GeV/c and θ = 18 degrees at target vertex

Use something simpler !

Favourable Conditions at COSY

compared to the PANDA situation

- Plexiglas can be used
 - radiation level <100 Gy (so I have been told)
 - plexiglas stands 100 Gy irradiation (Cobalt 60 source)
- photon sensors not in magnetic field
 - standard multi-anode PMT technology feasible
- less demanding requirements:
 - 35 degrees range with 16 pixels $\rightarrow\,$ 11 mrad sigma
 - hence use off-the shelve MA-PMTs (i.e. H8500)
- cost aspect resolution scaling with 1/sqrt(#ch)
 - also limit from upstream tracking precision

Favourable Conditions at COSY

- Plexiglas can be used (so I have been told)
- photon sensors not in magnetic field
- less demanding resolution requirements

- Tübingen can machine plexiglas well
- Erlangen has experience with H8500
- Jülich has or will have electronics
 - 512 channels for Phase I
- staged approach possible

and certainly I have forgotten something...

DIRC replacing FRH layers and FRI

 \bigcirc

Current Design Choices

- 4-fold rotational symmetry
- DIRC radiator tilted by 20°
- available width 310mm
- plexiglas radiator material
- no dispersion correction
- MaPMTs 64×(6mm)² pixels

- 4x 16 Focussing Light Guides, range 15°-50°
- 2 PMTs per FLG, worth 128 pixels 6mmx6mm

(initial idea was 8x1 pixels = 1 superpixel \rightarrow 16 superpixels per FL)

Activities

- Simulations (PHYSICA and GEANT4)
- Radiation hardness
- Optical surface quality tests
- Radiator geometry mapping
- sensors
- electronics
- mechanics

DIRC-at-WASA performance

Performance Studies

Geant4 model ready

Optical table in Giessen (K.Föhl)

Geant4 visualization

Peter Vlasov, Bonn

Plexiglas Radiation Hardness

Light Guides and VM2000 foil

40

VM2000 foil

Marko Zühlsdorf, KF

Radiator thickness mapping

Marko Zühlsdorf & KF

Constructing Prototypes

Tübingen prototype

Constructing Prototypes

Prototype Comparison

• Tübingen:

- r=650mm, d=40mm
- theta=15-50 degrees
- FLG "Erlangen/Siudak++"
 - 16x 50mm
 - VM2000 mirror coating
 - 2 mrad optical (sigma)
 - 11 mrad pixel equiv.
- 282mm width needed

• Erlangen:

- r=500mm, d=50mm
- theta=25-50 degrees
- FLG "Edinburgh"
 - 2x200mm, 1x400mm
 - total internal reflection
 - 7 mrad optical (sigma)
 - 8 mrad pixel equiv.
- 333mm width needed

Design Comparisons

- comparing several
 - plate geometries (quarter, half)
 - rim shapes (circle, octagon)
 - light guides (individual, block)
- small performance differences
- some shapes need analysis fudge

somewhat better performance, but analysis difficulty

Performance Comparison

- Tübingen:
- wider beta range
- full 3-17 deg theta

- Erlangen:
- better phi resolution
- sensors further outside
- pattern more complex

DIRC-at-WASA Scheduling

- Phase I
 - quarter plate

- Phase II
 - quarter plate, full 32x H8500
 - custom electronics
- Phase III

qualify DIRC

for WASA

• four quarter plates

Conclusions

- Cherenkov detector suggested
 - improve WASA energy resolution
 - proof-of-concept for the PANDA Endcap PID
- CEARA detector concept presented
- resolution circa $\sigma\beta$ =0.002 in simulations
- prototype construction under way
 see talks Adrian und Eugene
- I am eager to see this detector in real

Thank you to PANDA and COSY folks for information and discussion.