

NUSTAR Special Seminar

Monika Stachura

Life Sciences Division, TRIUMF, Vancouver, Canada

Tuesday, Feb. 11, 2020 at 13:00 p.m. Seminar Room KP1/KP3, SB3 4.161

GSI, Planckstraße 1, 64291 Darmstadt

"β-NMR Spectroscopy: From Nuclear Physics To Medicine"

 β -radiation detected nuclear magnetic resonance (β -NMR) spectroscopy is an ultrasensitive NMR technique which is based on the detection of β -particles emitted anisotropically by spin polarized nuclei. The combination of nuclear spin polarization and high detection efficiency of β -particles gives rise to a billion fold (10^9) or higher increase in sensitivity as compared to conventional NMR, and allows for interrogation of elements which are otherwise difficult to access. β -NMR has been applied in nuclear and solid state physics for over six decades, and here we present recent advances of the technique for chemistry and medicine.

 β -NMR has already been applied multiple times in measurements on Mg²⁺ and Li⁺ in ionic liquid solutions at TRIUMF, Canada's particle accelerator centre. In contrast to any previously reported measurements for Mg²⁺ ions, 25 mM MgCl₂ in EMIM-Ac and in EMIM-DCA compare favourably with conventional ²⁵Mg NMR, but do not suffer from line broadening due to quadrupole interactions (I=1/2 for ³¹Mg while I=5/2 for ²⁵Mg). All spectra exhibit very high resolution, with line widths of about 3 ppm, allowing for discrimination of species with oxygen and nitrogen coordination. Furthermore, just recently β -NMR has also been applied to study of Mg²⁺ binding to ATP – the energy currency of life.

In this talk I will demonstrate the potential of the β -NMR technique and recent advances of β -NMR measurements in liquids, including experiments with ultra-trace amounts of ^{31}Mg . Furthermore, I will also highlight the advances made towards β -NMR measurements on Cu and Ac isotopes, and hint at how β -NMR and star dust could help us understand why we get sick.

Coordinator: Timo Dickel/Michael Block Secretary: Luise Dörsching-Steitz https://indico.gsi.de/event/10098/